
When Ackermann meets Goodstein

David Fernández-Duque
Ghent University

International Workshop on Gödel’s Incompleteness Theorems
Wuhan University

Some history

1928. Ackermann discovers a ‘simple’ function that is
not primitive recursive

1931. Gödel’s incompleteness theorems

1944. Goodstein proves the termination of a certain
process using techniques outside of Peano arithmetic

1947. Goodstein defines the hyperoperation function,
a variant of the Ackermann function

1982. Kirby and Paris show that Goodstein’s
principle is independent from Peano arithmetic

Some history

1928. Ackermann discovers a ‘simple’ function that is
not primitive recursive

1931. Gödel’s incompleteness theorems

1944. Goodstein proves the termination of a certain
process using techniques outside of Peano arithmetic

1947. Goodstein defines the hyperoperation function,
a variant of the Ackermann function

1982. Kirby and Paris show that Goodstein’s
principle is independent from Peano arithmetic

Some history

1928. Ackermann discovers a ‘simple’ function that is
not primitive recursive

1931. Gödel’s incompleteness theorems

1944. Goodstein proves the termination of a certain
process using techniques outside of Peano arithmetic

1947. Goodstein defines the hyperoperation function,
a variant of the Ackermann function

1982. Kirby and Paris show that Goodstein’s
principle is independent from Peano arithmetic

Some history

1928. Ackermann discovers a ‘simple’ function that is
not primitive recursive

1931. Gödel’s incompleteness theorems

1944. Goodstein proves the termination of a certain
process using techniques outside of Peano arithmetic

1947. Goodstein defines the hyperoperation function,
a variant of the Ackermann function

1982. Kirby and Paris show that Goodstein’s
principle is independent from Peano arithmetic

Some history

1928. Ackermann discovers a ‘simple’ function that is
not primitive recursive

1931. Gödel’s incompleteness theorems

1944. Goodstein proves the termination of a certain
process using techniques outside of Peano arithmetic

1947. Goodstein defines the hyperoperation function,
a variant of the Ackermann function

1982. Kirby and Paris show that Goodstein’s
principle is independent from Peano arithmetic

Goodstein’s principle

1. G0m = m

= 22 = 222 + 22 + 2

∼ ωωω + ωω + ω

2. G1m = 333 + 33 + 3 − 1 = 333 + 33 + 2

∼ ωωω + ωω + 2

3. G2m = 444 + 44 + 2 − 1 = 444 + 44 + 1

∼ ωωω + ωω + 1

4. . . .

5. Gi∗m = 0

∼ 0

Goodstein’s principle

1. G0m = m = 22

= 222 + 22 + 2

∼ ωωω + ωω + ω

2. G1m = 333 + 33 + 3 − 1 = 333 + 33 + 2

∼ ωωω + ωω + 2

3. G2m = 444 + 44 + 2 − 1 = 444 + 44 + 1

∼ ωωω + ωω + 1

4. . . .

5. Gi∗m = 0

∼ 0

Goodstein’s principle

1. G0m = m = 22 = 222 + 22 + 2

∼ ωωω + ωω + ω

2. G1m = 333 + 33 + 3 − 1 = 333 + 33 + 2

∼ ωωω + ωω + 2

3. G2m = 444 + 44 + 2 − 1 = 444 + 44 + 1

∼ ωωω + ωω + 1

4. . . .

5. Gi∗m = 0

∼ 0

Goodstein’s principle

1. G0m = m = 22 = 222 + 22 + 2

∼ ωωω + ωω + ω

2. G1m

= 333 + 33 + 3 − 1 = 333 + 33 + 2

∼ ωωω + ωω + 2

3. G2m = 444 + 44 + 2 − 1 = 444 + 44 + 1

∼ ωωω + ωω + 1

4. . . .

5. Gi∗m = 0

∼ 0

Goodstein’s principle

1. G0m = m = 22 = 222 + 22 + 2

∼ ωωω + ωω + ω

2. G1m = 333 + 33 + 3

− 1 = 333 + 33 + 2

∼ ωωω + ωω + 2

3. G2m = 444 + 44 + 2 − 1 = 444 + 44 + 1

∼ ωωω + ωω + 1

4. . . .

5. Gi∗m = 0

∼ 0

Goodstein’s principle

1. G0m = m = 22 = 222 + 22 + 2

∼ ωωω + ωω + ω

2. G1m = 333 + 33 + 3 − 1

= 333 + 33 + 2

∼ ωωω + ωω + 2

3. G2m = 444 + 44 + 2 − 1 = 444 + 44 + 1

∼ ωωω + ωω + 1

4. . . .

5. Gi∗m = 0

∼ 0

Goodstein’s principle

1. G0m = m = 22 = 222 + 22 + 2

∼ ωωω + ωω + ω

2. G1m = 333 + 33 + 3 − 1 = 333 + 33 + 2

∼ ωωω + ωω + 2

3. G2m = 444 + 44 + 2 − 1 = 444 + 44 + 1

∼ ωωω + ωω + 1

4. . . .

5. Gi∗m = 0

∼ 0

Goodstein’s principle

1. G0m = m = 22 = 222 + 22 + 2

∼ ωωω + ωω + ω

2. G1m = 333 + 33 + 3 − 1 = 333 + 33 + 2

∼ ωωω + ωω + 2

3. G2m

= 444 + 44 + 2 − 1 = 444 + 44 + 1

∼ ωωω + ωω + 1

4. . . .

5. Gi∗m = 0

∼ 0

Goodstein’s principle

1. G0m = m = 22 = 222 + 22 + 2

∼ ωωω + ωω + ω

2. G1m = 333 + 33 + 3 − 1 = 333 + 33 + 2

∼ ωωω + ωω + 2

3. G2m = 444 + 44 + 2

− 1 = 444 + 44 + 1

∼ ωωω + ωω + 1

4. . . .

5. Gi∗m = 0

∼ 0

Goodstein’s principle

1. G0m = m = 22 = 222 + 22 + 2

∼ ωωω + ωω + ω

2. G1m = 333 + 33 + 3 − 1 = 333 + 33 + 2

∼ ωωω + ωω + 2

3. G2m = 444 + 44 + 2 − 1

= 444 + 44 + 1

∼ ωωω + ωω + 1

4. . . .

5. Gi∗m = 0

∼ 0

Goodstein’s principle

1. G0m = m = 22 = 222 + 22 + 2

∼ ωωω + ωω + ω

2. G1m = 333 + 33 + 3 − 1 = 333 + 33 + 2

∼ ωωω + ωω + 2

3. G2m = 444 + 44 + 2 − 1 = 444 + 44 + 1

∼ ωωω + ωω + 1

4. . . .

5. Gi∗m = 0

∼ 0

Goodstein’s principle

1. G0m = m = 22 = 222 + 22 + 2

∼ ωωω + ωω + ω

2. G1m = 333 + 33 + 3 − 1 = 333 + 33 + 2

∼ ωωω + ωω + 2

3. G2m = 444 + 44 + 2 − 1 = 444 + 44 + 1

∼ ωωω + ωω + 1

4. . . .

5. Gi∗m = 0

∼ 0

Goodstein’s principle

1. G0m = m = 22 = 222 + 22 + 2

∼ ωωω + ωω + ω

2. G1m = 333 + 33 + 3 − 1 = 333 + 33 + 2

∼ ωωω + ωω + 2

3. G2m = 444 + 44 + 2 − 1 = 444 + 44 + 1

∼ ωωω + ωω + 1

4. . . .

5. Gi∗m = 0

∼ 0

Goodstein’s principle

1. G0m = m = 22 = 222 + 22 + 2 ∼ ωωω + ωω + ω

2. G1m = 333 + 33 + 3 − 1 = 333 + 33 + 2

∼ ωωω + ωω + 2

3. G2m = 444 + 44 + 2 − 1 = 444 + 44 + 1

∼ ωωω + ωω + 1

4. . . .

5. Gi∗m = 0

∼ 0

Goodstein’s principle

1. G0m = m = 22 = 222 + 22 + 2 ∼ ωωω + ωω + ω

2. G1m = 333 + 33 + 3 − 1 = 333 + 33 + 2 ∼ ωωω + ωω + 2

3. G2m = 444 + 44 + 2 − 1 = 444 + 44 + 1

∼ ωωω + ωω + 1

4. . . .

5. Gi∗m = 0

∼ 0

Goodstein’s principle

1. G0m = m = 22 = 222 + 22 + 2 ∼ ωωω + ωω + ω

2. G1m = 333 + 33 + 3 − 1 = 333 + 33 + 2 ∼ ωωω + ωω + 2

3. G2m = 444 + 44 + 2 − 1 = 444 + 44 + 1 ∼ ωωω + ωω + 1

4. . . .

5. Gi∗m = 0

∼ 0

Goodstein’s principle

1. G0m = m = 22 = 222 + 22 + 2 ∼ ωωω + ωω + ω

2. G1m = 333 + 33 + 3 − 1 = 333 + 33 + 2 ∼ ωωω + ωω + 2

3. G2m = 444 + 44 + 2 − 1 = 444 + 44 + 1 ∼ ωωω + ωω + 1

4. . . .

5. Gi∗m = 0 ∼ 0

Elements of a Goodstein process

1. A notation system for natural numbers

2. A notion of normal form m 7→ nfk(m)

3. A base change operation m 7→ ⟨ℓ/k⟩m

Elements of a Goodstein process

1. A notation system for natural numbers

2. A notion of normal form m 7→ nfk(m)

3. A base change operation m 7→ ⟨ℓ/k⟩m

Elements of a Goodstein process

1. A notation system for natural numbers

2. A notion of normal form m 7→ nfk(m)

3. A base change operation m 7→ ⟨ℓ/k⟩m

Parametrized Ackermann functions

Fix k and define Aa(k, b) = Aab recursively:

▶ Aa(−1) = 1 (auxiliary value)

▶ A0b = kb

▶ Aa+1b = Ak
aAa+1(b − 1) (b ∈ N)

Base-k Ackermannian terms: Built from 0, x + y , Ax (k, y).

Parametrized Ackermann functions

Fix k and define Aa(k, b) = Aab recursively:

▶ Aa(−1) = 1 (auxiliary value)

▶ A0b = kb

▶ Aa+1b = Ak
aAa+1(b − 1) (b ∈ N)

Base-k Ackermannian terms: Built from 0, x + y , Ax (k, y).

Parametrized Ackermann functions

Fix k and define Aa(k, b) = Aab recursively:

▶ Aa(−1) = 1 (auxiliary value)

▶ A0b = kb

▶ Aa+1b = Ak
aAa+1(b − 1) (b ∈ N)

Base-k Ackermannian terms: Built from 0, x + y , Ax (k, y).

Parametrized Ackermann functions

Fix k and define Aa(k, b) = Aab recursively:

▶ Aa(−1) = 1 (auxiliary value)

▶ A0b = kb

▶ Aa+1b = Ak
aAa+1(b − 1) (b ∈ N)

Base-k Ackermannian terms: Built from 0, x + y , Ax (k, y).

Ackermannian normal forms

Fix k, set Aab = Aa(k, b).

Goal: Write m = Aab + c in a canonical way.

1. Choose a maximal such that Aa0 ≤ m.

2. Then, choose b maximal such that Aab ≤ m.

3. Write m = Aab + c. This is the (simple) Ackermannian
representation for m.

Ackermannian normal forms

Fix k, set Aab = Aa(k, b).

Goal: Write m = Aab + c in a canonical way.

1. Choose a maximal such that Aa0 ≤ m.

2. Then, choose b maximal such that Aab ≤ m.

3. Write m = Aab + c. This is the (simple) Ackermannian
representation for m.

Ackermannian normal forms

Fix k, set Aab = Aa(k, b).

Goal: Write m = Aab + c in a canonical way.

1. Choose a maximal such that Aa0 ≤ m.

2. Then, choose b maximal such that Aab ≤ m.

3. Write m = Aab + c. This is the (simple) Ackermannian
representation for m.

Ackermannian normal forms

Fix k, set Aab = Aa(k, b).

Goal: Write m = Aab + c in a canonical way.

1. Choose a maximal such that Aa0 ≤ m.

2. Then, choose b maximal such that Aab ≤ m.

3. Write m = Aab + c. This is the (simple) Ackermannian
representation for m.

Term representation

Suppose m = Aab + c in Ackermannian representation and k ≥ 2.
Goal: Assign a term nfk(m) to m.

Option 1 (hereditary subscripts): Treat b as unary, write a, c in
normal form.

Option 2 (hereditary argument): Treat a as unary, write b, c in
normal form.

Option 3 (fully hereditary): Write a, b, c in normal form.

Example: 6 = A10 + 2 = A10 + A0A00 = AA000 + A0A00

Term representation

Suppose m = Aab + c in Ackermannian representation and k ≥ 2.
Goal: Assign a term nfk(m) to m.

Option 1 (hereditary subscripts): Treat b as unary, write a, c in
normal form.

Option 2 (hereditary argument): Treat a as unary, write b, c in
normal form.

Option 3 (fully hereditary): Write a, b, c in normal form.

Example: 6 = A10 + 2 = A10 + A0A00 = AA000 + A0A00

Term representation

Suppose m = Aab + c in Ackermannian representation and k ≥ 2.
Goal: Assign a term nfk(m) to m.

Option 1 (hereditary subscripts): Treat b as unary, write a, c in
normal form.

Option 2 (hereditary argument): Treat a as unary, write b, c in
normal form.

Option 3 (fully hereditary): Write a, b, c in normal form.

Example: 6 = A10 + 2 = A10 + A0A00 = AA000 + A0A00

Term representation

Suppose m = Aab + c in Ackermannian representation and k ≥ 2.
Goal: Assign a term nfk(m) to m.

Option 1 (hereditary subscripts): Treat b as unary, write a, c in
normal form.

Option 2 (hereditary argument): Treat a as unary, write b, c in
normal form.

Option 3 (fully hereditary): Write a, b, c in normal form.

Example: 6 = A10 + 2 = A10 + A0A00 = AA000 + A0A00

Term representation

Suppose m = Aab + c in Ackermannian representation and k ≥ 2.
Goal: Assign a term nfk(m) to m.

Option 1 (hereditary subscripts): Treat b as unary, write a, c in
normal form.

Option 2 (hereditary argument): Treat a as unary, write b, c in
normal form.

Option 3 (fully hereditary): Write a, b, c in normal form.

Example: 6 = A10 + 2

= A10 + A0A00 = AA000 + A0A00

Term representation

Suppose m = Aab + c in Ackermannian representation and k ≥ 2.
Goal: Assign a term nfk(m) to m.

Option 1 (hereditary subscripts): Treat b as unary, write a, c in
normal form.

Option 2 (hereditary argument): Treat a as unary, write b, c in
normal form.

Option 3 (fully hereditary): Write a, b, c in normal form.

Example: 6 = A10 + 2 = A10 + A0A00

= AA000 + A0A00

Term representation

Suppose m = Aab + c in Ackermannian representation and k ≥ 2.
Goal: Assign a term nfk(m) to m.

Option 1 (hereditary subscripts): Treat b as unary, write a, c in
normal form.

Option 2 (hereditary argument): Treat a as unary, write b, c in
normal form.

Option 3 (fully hereditary): Write a, b, c in normal form.

Example: 6 = A10 + 2 = A10 + A0A00 = AA000 + A0A00

Base-change operations

1. ⟨ℓ/k⟩(Aa(k, b) + c) = A⟨ℓ/k⟩a(ℓ, b) + ⟨ℓ/k⟩c

2. ⟨ℓ/k⟩(Aa(k, b) + c) = Aa(ℓ, ⟨ℓ/k⟩b) + ⟨ℓ/k⟩c

3. ⟨ℓ/k⟩(Aa(k, b) + c) = A⟨ℓ/k⟩a(ℓ, ⟨ℓ/k⟩b) + ⟨ℓ/k⟩c

Base-change operations

1. ⟨ℓ/k⟩(Aa(k, b) + c) = A⟨ℓ/k⟩a(ℓ, b) + ⟨ℓ/k⟩c

2. ⟨ℓ/k⟩(Aa(k, b) + c) = Aa(ℓ, ⟨ℓ/k⟩b) + ⟨ℓ/k⟩c

3. ⟨ℓ/k⟩(Aa(k, b) + c) = A⟨ℓ/k⟩a(ℓ, ⟨ℓ/k⟩b) + ⟨ℓ/k⟩c

Base-change operations

1. ⟨ℓ/k⟩(Aa(k, b) + c) = A⟨ℓ/k⟩a(ℓ, b) + ⟨ℓ/k⟩c

2. ⟨ℓ/k⟩(Aa(k, b) + c) = Aa(ℓ, ⟨ℓ/k⟩b) + ⟨ℓ/k⟩c

3. ⟨ℓ/k⟩(Aa(k, b) + c) = A⟨ℓ/k⟩a(ℓ, ⟨ℓ/k⟩b) + ⟨ℓ/k⟩c

Ackermannian Goodstein sequences

Fix m ∈ N and define a sequence (Gim)i<α:

▶ G0m = m

▶ if Gim > 0, Gi+1m = ⟨i + 3/i + 2⟩Gim − 1

▶ if Gim = 0, Gi+1m is undefined.

Ackermannian Goodstein sequences

Fix m ∈ N and define a sequence (Gim)i<α:

▶ G0m = m

▶ if Gim > 0, Gi+1m = ⟨i + 3/i + 2⟩Gim − 1

▶ if Gim = 0, Gi+1m is undefined.

Ackermannian Goodstein sequences

Fix m ∈ N and define a sequence (Gim)i<α:

▶ G0m = m

▶ if Gim > 0, Gi+1m = ⟨i + 3/i + 2⟩Gim − 1

▶ if Gim = 0, Gi+1m is undefined.

Ackermannian Goodstein sequences

Fix m ∈ N and define a sequence (Gim)i<α:

▶ G0m = m

▶ if Gim > 0, Gi+1m = ⟨i + 3/i + 2⟩Gim − 1

▶ if Gim = 0, Gi+1m is undefined.

Questions for this talk

1. Are these sequences finite?

2. If so, what is the proof-theoretic strength of termination?

3. What is the maximal proof-theoretic strength of termination
of an Ackermannian Goodstein process?

Questions for this talk

1. Are these sequences finite?

2. If so, what is the proof-theoretic strength of termination?

3. What is the maximal proof-theoretic strength of termination
of an Ackermannian Goodstein process?

Questions for this talk

1. Are these sequences finite?

2. If so, what is the proof-theoretic strength of termination?

3. What is the maximal proof-theoretic strength of termination
of an Ackermannian Goodstein process?

Predicative theories of second order arithmetic

Language of SOA: Extend the language of Peano arithmetic with
t ∈ X and ∀X ⊆ N φ.

ACA0: Induction axiom plus “for every set X , the Turing
jump of X exists.”

ACA′
0: ACA0 plus “for every set X and n, the nth Turing

jump of X exists.”

ACA+
0 : ACA0 plus “for every set X , the ωth Turing jump of

X exists.”

ATR0: ACA0 plus “for every set X and ordinal α, the αth

Turing jump of X exists.”

Predicative theories of second order arithmetic

Language of SOA: Extend the language of Peano arithmetic with
t ∈ X and ∀X ⊆ N φ.

ACA0: Induction axiom plus “for every set X , the Turing
jump of X exists.”

ACA′
0: ACA0 plus “for every set X and n, the nth Turing

jump of X exists.”

ACA+
0 : ACA0 plus “for every set X , the ωth Turing jump of

X exists.”

ATR0: ACA0 plus “for every set X and ordinal α, the αth

Turing jump of X exists.”

Predicative theories of second order arithmetic

Language of SOA: Extend the language of Peano arithmetic with
t ∈ X and ∀X ⊆ N φ.

ACA0: Induction axiom plus “for every set X , the Turing
jump of X exists.”

ACA′
0: ACA0 plus “for every set X and n, the nth Turing

jump of X exists.”

ACA+
0 : ACA0 plus “for every set X , the ωth Turing jump of

X exists.”

ATR0: ACA0 plus “for every set X and ordinal α, the αth

Turing jump of X exists.”

Predicative theories of second order arithmetic

Language of SOA: Extend the language of Peano arithmetic with
t ∈ X and ∀X ⊆ N φ.

ACA0: Induction axiom plus “for every set X , the Turing
jump of X exists.”

ACA′
0: ACA0 plus “for every set X and n, the nth Turing

jump of X exists.”

ACA+
0 : ACA0 plus “for every set X , the ωth Turing jump of

X exists.”

ATR0: ACA0 plus “for every set X and ordinal α, the αth

Turing jump of X exists.”

Predicative theories of second order arithmetic

Language of SOA: Extend the language of Peano arithmetic with
t ∈ X and ∀X ⊆ N φ.

ACA0: Induction axiom plus “for every set X , the Turing
jump of X exists.”

ACA′
0: ACA0 plus “for every set X and n, the nth Turing

jump of X exists.”

ACA+
0 : ACA0 plus “for every set X , the ωth Turing jump of

X exists.”

ATR0: ACA0 plus “for every set X and ordinal α, the αth

Turing jump of X exists.”

The Feferman-Schütte ordinal

For ordinals α, β define:

▶ φ0β = ωβ

▶ For α > 0, φαβ enumerates {ξ : ∀γ < α (φγξ = ξ)}

We usually write εα instead of φ1α. These are the ordinals ξ
s.t. ωξ = ξ.

Fact: Every ξ > 0 can be written uniquely in the form φαβ + γ,
with γ < ξ and β < φαβ.

Γ0: First fixed point of γ 7→ φγ0.

If ξ < Γ0, then α, β, γ < ξ.

The Feferman-Schütte ordinal

For ordinals α, β define:

▶ φ0β = ωβ

▶ For α > 0, φαβ enumerates {ξ : ∀γ < α (φγξ = ξ)}

We usually write εα instead of φ1α. These are the ordinals ξ
s.t. ωξ = ξ.

Fact: Every ξ > 0 can be written uniquely in the form φαβ + γ,
with γ < ξ and β < φαβ.

Γ0: First fixed point of γ 7→ φγ0.

If ξ < Γ0, then α, β, γ < ξ.

The Feferman-Schütte ordinal

For ordinals α, β define:

▶ φ0β = ωβ

▶ For α > 0, φαβ enumerates {ξ : ∀γ < α (φγξ = ξ)}

We usually write εα instead of φ1α. These are the ordinals ξ
s.t. ωξ = ξ.

Fact: Every ξ > 0 can be written uniquely in the form φαβ + γ,
with γ < ξ and β < φαβ.

Γ0: First fixed point of γ 7→ φγ0.

If ξ < Γ0, then α, β, γ < ξ.

The Feferman-Schütte ordinal

For ordinals α, β define:

▶ φ0β = ωβ

▶ For α > 0, φαβ enumerates {ξ : ∀γ < α (φγξ = ξ)}

We usually write εα instead of φ1α. These are the ordinals ξ
s.t. ωξ = ξ.

Fact: Every ξ > 0 can be written uniquely in the form φαβ + γ,
with γ < ξ and β < φαβ.

Γ0: First fixed point of γ 7→ φγ0.

If ξ < Γ0, then α, β, γ < ξ.

The Feferman-Schütte ordinal

For ordinals α, β define:

▶ φ0β = ωβ

▶ For α > 0, φαβ enumerates {ξ : ∀γ < α (φγξ = ξ)}

We usually write εα instead of φ1α. These are the ordinals ξ
s.t. ωξ = ξ.

Fact: Every ξ > 0 can be written uniquely in the form φαβ + γ,
with γ < ξ and β < φαβ.

Γ0: First fixed point of γ 7→ φγ0.

If ξ < Γ0, then α, β, γ < ξ.

The Feferman-Schütte ordinal

For ordinals α, β define:

▶ φ0β = ωβ

▶ For α > 0, φαβ enumerates {ξ : ∀γ < α (φγξ = ξ)}

We usually write εα instead of φ1α. These are the ordinals ξ
s.t. ωξ = ξ.

Fact: Every ξ > 0 can be written uniquely in the form φαβ + γ,
with γ < ξ and β < φαβ.

Γ0: First fixed point of γ 7→ φγ0.

If ξ < Γ0, then α, β, γ < ξ.

The Feferman-Schütte ordinal

For ordinals α, β define:

▶ φ0β = ωβ

▶ For α > 0, φαβ enumerates {ξ : ∀γ < α (φγξ = ξ)}

We usually write εα instead of φ1α. These are the ordinals ξ
s.t. ωξ = ξ.

Fact: Every ξ > 0 can be written uniquely in the form φαβ + γ,
with γ < ξ and β < φαβ.

Γ0: First fixed point of γ 7→ φγ0.

If ξ < Γ0, then α, β, γ < ξ.

Proof-theoretic strength
Let ξ[n] denote the nth element of the fundamental sequence for
ξ < Γ0.
Define ξJnK = ξ[1][2] . . . [n].

Fact: For all ξ < Γ0 there is i s.t. ξJiK = 0.
In this talk, T has proof-theoretic strength Λ if:

1. T does not prove ∀ξ < Λ∃i (ξJiK = 0)

2. For eacy α < Λ, T proves ∀ξ < α∃i (ξJiK = 0)

Theorem

1. ACA0 has proof-theoretic strength ε0 (= φ10)
2. ACA′

0 has proof-theoretic strength εω (= φ1ω)
3. ACA+

0 has proof-theoretic strength φ20
4. ATR0 has proof-theoretic strength Γ0

Proof-theoretic strength
Let ξ[n] denote the nth element of the fundamental sequence for
ξ < Γ0.
Define ξJnK = ξ[1][2] . . . [n].
Fact: For all ξ < Γ0 there is i s.t. ξJiK = 0.

In this talk, T has proof-theoretic strength Λ if:

1. T does not prove ∀ξ < Λ∃i (ξJiK = 0)

2. For eacy α < Λ, T proves ∀ξ < α∃i (ξJiK = 0)

Theorem

1. ACA0 has proof-theoretic strength ε0 (= φ10)
2. ACA′

0 has proof-theoretic strength εω (= φ1ω)
3. ACA+

0 has proof-theoretic strength φ20
4. ATR0 has proof-theoretic strength Γ0

Proof-theoretic strength
Let ξ[n] denote the nth element of the fundamental sequence for
ξ < Γ0.
Define ξJnK = ξ[1][2] . . . [n].
Fact: For all ξ < Γ0 there is i s.t. ξJiK = 0.
In this talk, T has proof-theoretic strength Λ if:

1. T does not prove ∀ξ < Λ∃i (ξJiK = 0)

2. For eacy α < Λ, T proves ∀ξ < α∃i (ξJiK = 0)

Theorem

1. ACA0 has proof-theoretic strength ε0 (= φ10)
2. ACA′

0 has proof-theoretic strength εω (= φ1ω)
3. ACA+

0 has proof-theoretic strength φ20
4. ATR0 has proof-theoretic strength Γ0

Proof-theoretic strength
Let ξ[n] denote the nth element of the fundamental sequence for
ξ < Γ0.
Define ξJnK = ξ[1][2] . . . [n].
Fact: For all ξ < Γ0 there is i s.t. ξJiK = 0.
In this talk, T has proof-theoretic strength Λ if:

1. T does not prove ∀ξ < Λ∃i (ξJiK = 0)

2. For eacy α < Λ, T proves ∀ξ < α∃i (ξJiK = 0)

Theorem

1. ACA0 has proof-theoretic strength ε0 (= φ10)
2. ACA′

0 has proof-theoretic strength εω (= φ1ω)
3. ACA+

0 has proof-theoretic strength φ20
4. ATR0 has proof-theoretic strength Γ0

Proof-theoretic strength
Let ξ[n] denote the nth element of the fundamental sequence for
ξ < Γ0.
Define ξJnK = ξ[1][2] . . . [n].
Fact: For all ξ < Γ0 there is i s.t. ξJiK = 0.
In this talk, T has proof-theoretic strength Λ if:

1. T does not prove ∀ξ < Λ∃i (ξJiK = 0)

2. For eacy α < Λ, T proves ∀ξ < α∃i (ξJiK = 0)

Theorem

1. ACA0 has proof-theoretic strength ε0 (= φ10)
2. ACA′

0 has proof-theoretic strength εω (= φ1ω)
3. ACA+

0 has proof-theoretic strength φ20
4. ATR0 has proof-theoretic strength Γ0

Proof-theoretic strength
Let ξ[n] denote the nth element of the fundamental sequence for
ξ < Γ0.
Define ξJnK = ξ[1][2] . . . [n].
Fact: For all ξ < Γ0 there is i s.t. ξJiK = 0.
In this talk, T has proof-theoretic strength Λ if:

1. T does not prove ∀ξ < Λ∃i (ξJiK = 0)

2. For eacy α < Λ, T proves ∀ξ < α∃i (ξJiK = 0)

Theorem

1. ACA0 has proof-theoretic strength ε0 (= φ10)

2. ACA′
0 has proof-theoretic strength εω (= φ1ω)

3. ACA+
0 has proof-theoretic strength φ20

4. ATR0 has proof-theoretic strength Γ0

Proof-theoretic strength
Let ξ[n] denote the nth element of the fundamental sequence for
ξ < Γ0.
Define ξJnK = ξ[1][2] . . . [n].
Fact: For all ξ < Γ0 there is i s.t. ξJiK = 0.
In this talk, T has proof-theoretic strength Λ if:

1. T does not prove ∀ξ < Λ∃i (ξJiK = 0)

2. For eacy α < Λ, T proves ∀ξ < α∃i (ξJiK = 0)

Theorem

1. ACA0 has proof-theoretic strength ε0 (= φ10)
2. ACA′

0 has proof-theoretic strength εω (= φ1ω)

3. ACA+
0 has proof-theoretic strength φ20

4. ATR0 has proof-theoretic strength Γ0

Proof-theoretic strength
Let ξ[n] denote the nth element of the fundamental sequence for
ξ < Γ0.
Define ξJnK = ξ[1][2] . . . [n].
Fact: For all ξ < Γ0 there is i s.t. ξJiK = 0.
In this talk, T has proof-theoretic strength Λ if:

1. T does not prove ∀ξ < Λ∃i (ξJiK = 0)

2. For eacy α < Λ, T proves ∀ξ < α∃i (ξJiK = 0)

Theorem

1. ACA0 has proof-theoretic strength ε0 (= φ10)
2. ACA′

0 has proof-theoretic strength εω (= φ1ω)
3. ACA+

0 has proof-theoretic strength φ20

4. ATR0 has proof-theoretic strength Γ0

Proof-theoretic strength
Let ξ[n] denote the nth element of the fundamental sequence for
ξ < Γ0.
Define ξJnK = ξ[1][2] . . . [n].
Fact: For all ξ < Γ0 there is i s.t. ξJiK = 0.
In this talk, T has proof-theoretic strength Λ if:

1. T does not prove ∀ξ < Λ∃i (ξJiK = 0)

2. For eacy α < Λ, T proves ∀ξ < α∃i (ξJiK = 0)

Theorem

1. ACA0 has proof-theoretic strength ε0 (= φ10)
2. ACA′

0 has proof-theoretic strength εω (= φ1ω)
3. ACA+

0 has proof-theoretic strength φ20
4. ATR0 has proof-theoretic strength Γ0

Proving termination and independence

Strategy: Define o : [2, ∞) × N → Λ with the following properties.

1. o2(m) > o3(G1m) > o4(G2m) > o5(G3m) . . .

2. oi+3(Gi+1m) ≥ oi+2(Gim)[i + 1]

▶ Item 1 suffices to prove that the Goodstein process terminates.

▶ Item 2 suffices to prove that the Goodstein process is at least
as slow as stepping down the fundamental sequences.

Note: This requires fundamental sequences with the
Bachmann property, which we have.

Proving termination and independence

Strategy: Define o : [2, ∞) × N → Λ with the following properties.

1. o2(m) > o3(G1m) > o4(G2m) > o5(G3m) . . .

2. oi+3(Gi+1m) ≥ oi+2(Gim)[i + 1]

▶ Item 1 suffices to prove that the Goodstein process terminates.

▶ Item 2 suffices to prove that the Goodstein process is at least
as slow as stepping down the fundamental sequences.

Note: This requires fundamental sequences with the
Bachmann property, which we have.

Proving termination and independence

Strategy: Define o : [2, ∞) × N → Λ with the following properties.

1. o2(m) > o3(G1m) > o4(G2m) > o5(G3m) . . .

2. oi+3(Gi+1m) ≥ oi+2(Gim)[i + 1]

▶ Item 1 suffices to prove that the Goodstein process terminates.

▶ Item 2 suffices to prove that the Goodstein process is at least
as slow as stepping down the fundamental sequences.

Note: This requires fundamental sequences with the
Bachmann property, which we have.

Proving termination and independence

Strategy: Define o : [2, ∞) × N → Λ with the following properties.

1. o2(m) > o3(G1m) > o4(G2m) > o5(G3m) . . .

2. oi+3(Gi+1m) ≥ oi+2(Gim)[i + 1]

▶ Item 1 suffices to prove that the Goodstein process terminates.

▶ Item 2 suffices to prove that the Goodstein process is at least
as slow as stepping down the fundamental sequences.

Note: This requires fundamental sequences with the
Bachmann property, which we have.

Proving termination and independence

Strategy: Define o : [2, ∞) × N → Λ with the following properties.

1. o2(m) > o3(G1m) > o4(G2m) > o5(G3m) . . .

2. oi+3(Gi+1m) ≥ oi+2(Gim)[i + 1]

▶ Item 1 suffices to prove that the Goodstein process terminates.

▶ Item 2 suffices to prove that the Goodstein process is at least
as slow as stepping down the fundamental sequences.

Note: This requires fundamental sequences with the
Bachmann property, which we have.

Proving termination and independence

Strategy: Define o : [2, ∞) × N → Λ with the following properties.

1. o2(m) > o3(G1m) > o4(G2m) > o5(G3m) . . .

2. oi+3(Gi+1m) ≥ oi+2(Gim)[i + 1]

▶ Item 1 suffices to prove that the Goodstein process terminates.

▶ Item 2 suffices to prove that the Goodstein process is at least
as slow as stepping down the fundamental sequences.

Note: This requires fundamental sequences with the
Bachmann property, which we have.

Ackermann vs. Veblen

▶ Ackermannian normal form: Aa(k, b) + c

▶ Veblen normal form: φαβ + γ

▶ Ackermannian recursion: Aa+1(k, b + 1) = Ak
aAa+1(k, b)

▶ Fundamental sequences: φα+1(β + 1)[k] = φk
α(φα+1β + 1)

Thus, it is tempting to set ok(Aa(k, b) + c) = φok(a)ok(b) + ok(c).

But we can get away with much less!

Ackermann vs. Veblen

▶ Ackermannian normal form: Aa(k, b) + c

▶ Veblen normal form: φαβ + γ

▶ Ackermannian recursion: Aa+1(k, b + 1) = Ak
aAa+1(k, b)

▶ Fundamental sequences: φα+1(β + 1)[k] = φk
α(φα+1β + 1)

Thus, it is tempting to set ok(Aa(k, b) + c) = φok(a)ok(b) + ok(c).

But we can get away with much less!

Ackermann vs. Veblen

▶ Ackermannian normal form: Aa(k, b) + c

▶ Veblen normal form: φαβ + γ

▶ Ackermannian recursion: Aa+1(k, b + 1) = Ak
aAa+1(k, b)

▶ Fundamental sequences: φα+1(β + 1)[k] = φk
α(φα+1β + 1)

Thus, it is tempting to set ok(Aa(k, b) + c) = φok(a)ok(b) + ok(c).

But we can get away with much less!

Ackermann vs. Veblen

▶ Ackermannian normal form: Aa(k, b) + c

▶ Veblen normal form: φαβ + γ

▶ Ackermannian recursion: Aa+1(k, b + 1) = Ak
aAa+1(k, b)

▶ Fundamental sequences: φα+1(β + 1)[k] = φk
α(φα+1β + 1)

Thus, it is tempting to set ok(Aa(k, b) + c) = φok(a)ok(b) + ok(c).

But we can get away with much less!

Ackermann vs. Veblen

▶ Ackermannian normal form: Aa(k, b) + c

▶ Veblen normal form: φαβ + γ

▶ Ackermannian recursion: Aa+1(k, b + 1) = Ak
aAa+1(k, b)

▶ Fundamental sequences: φα+1(β + 1)[k] = φk
α(φα+1β + 1)

Thus, it is tempting to set ok(Aa(k, b) + c) = φok(a)ok(b) + ok(c).

But we can get away with much less!

Ackermann vs. Veblen

▶ Ackermannian normal form: Aa(k, b) + c

▶ Veblen normal form: φαβ + γ

▶ Ackermannian recursion: Aa+1(k, b + 1) = Ak
aAa+1(k, b)

▶ Fundamental sequences: φα+1(β + 1)[k] = φk
α(φα+1β + 1)

Thus, it is tempting to set ok(Aa(k, b) + c) = φok(a)ok(b) + ok(c).

But we can get away with much less!

Order-types with hereditary subscripts

Fact: Every ordinal below ε0 can be written in terms of 0,
addition, and ξ 7→ ωξ.

Recall: When writing Aab + c with hereditary subscripts, a, c are
written in normal form, b is treated as parameter.

In this case, ⟨ℓ/k⟩Aa(k, b) + c = A⟨ℓ/k⟩a(ℓ, b) + ⟨ℓ/k⟩c.

Definition
ok : N → ε0 is given recursively by:
▶ ok(0) = 0.
▶ ok(Aab + c) = ωω·ok(a)+b + ok(c).

Order-types with hereditary subscripts

Fact: Every ordinal below ε0 can be written in terms of 0,
addition, and ξ 7→ ωξ.

Recall: When writing Aab + c with hereditary subscripts, a, c are
written in normal form, b is treated as parameter.

In this case, ⟨ℓ/k⟩Aa(k, b) + c = A⟨ℓ/k⟩a(ℓ, b) + ⟨ℓ/k⟩c.

Definition
ok : N → ε0 is given recursively by:
▶ ok(0) = 0.
▶ ok(Aab + c) = ωω·ok(a)+b + ok(c).

Order-types with hereditary subscripts

Fact: Every ordinal below ε0 can be written in terms of 0,
addition, and ξ 7→ ωξ.

Recall: When writing Aab + c with hereditary subscripts, a, c are
written in normal form, b is treated as parameter.

In this case, ⟨ℓ/k⟩Aa(k, b) + c = A⟨ℓ/k⟩a(ℓ, b) + ⟨ℓ/k⟩c.

Definition
ok : N → ε0 is given recursively by:
▶ ok(0) = 0.
▶ ok(Aab + c) = ωω·ok(a)+b + ok(c).

Order-types with hereditary subscripts

Fact: Every ordinal below ε0 can be written in terms of 0,
addition, and ξ 7→ ωξ.

Recall: When writing Aab + c with hereditary subscripts, a, c are
written in normal form, b is treated as parameter.

In this case, ⟨ℓ/k⟩Aa(k, b) + c = A⟨ℓ/k⟩a(ℓ, b) + ⟨ℓ/k⟩c.

Definition
ok : N → ε0 is given recursively by:
▶ ok(0) = 0.

▶ ok(Aab + c) = ωω·ok(a)+b + ok(c).

Order-types with hereditary subscripts

Fact: Every ordinal below ε0 can be written in terms of 0,
addition, and ξ 7→ ωξ.

Recall: When writing Aab + c with hereditary subscripts, a, c are
written in normal form, b is treated as parameter.

In this case, ⟨ℓ/k⟩Aa(k, b) + c = A⟨ℓ/k⟩a(ℓ, b) + ⟨ℓ/k⟩c.

Definition
ok : N → ε0 is given recursively by:
▶ ok(0) = 0.
▶ ok(Aab + c) = ωω·ok(a)+b + ok(c).

Goodstein sequences for ACA0

Recall: The Goodstein sequence starting at m is defined by
▶ G0m = m
▶ Gi+1m = ⟨i + 3/i + 2⟩Gim − 1, if Gim > 0
▶ the sequence terminates if Gim = 0

Theorem (F-D, Gjetaj, Weiermann)
The Ackermannian Goodstein process with hereditary subscripts
always terminates, but this fact is not provable in ACA0.

Proof idea. The mapping ok satisfies the required properties for
proving these facts.

Goodstein sequences for ACA0

Recall: The Goodstein sequence starting at m is defined by
▶ G0m = m
▶ Gi+1m = ⟨i + 3/i + 2⟩Gim − 1, if Gim > 0
▶ the sequence terminates if Gim = 0

Theorem (F-D, Gjetaj, Weiermann)
The Ackermannian Goodstein process with hereditary subscripts
always terminates, but this fact is not provable in ACA0.

Proof idea. The mapping ok satisfies the required properties for
proving these facts.

Goodstein sequences for ACA0

Recall: The Goodstein sequence starting at m is defined by
▶ G0m = m
▶ Gi+1m = ⟨i + 3/i + 2⟩Gim − 1, if Gim > 0
▶ the sequence terminates if Gim = 0

Theorem (F-D, Gjetaj, Weiermann)
The Ackermannian Goodstein process with hereditary subscripts
always terminates, but this fact is not provable in ACA0.

Proof idea. The mapping ok satisfies the required properties for
proving these facts.

Order-types with hereditary arguments

Fact: Every ordinal below φ1ω can be written in terms of 0,
addition, ξ 7→ ωξ and n 7→ εn with n finite.

Recall: When writing Aab + c with hereditary arguments, b, c are
written in normal form, a is treated as parameter.

In this case, ⟨ℓ/k⟩Aa(k, b) + c = Aa(ℓ, ⟨ℓ/k⟩b) + ⟨ℓ/k⟩c.

Definition
o′

k : N → εω is given recursively by:
▶ o′

k(0) = 0.
▶ o′

k(Aab + c) = ωεa+o′
k(b) + o′

k(c).

Order-types with hereditary arguments

Fact: Every ordinal below φ1ω can be written in terms of 0,
addition, ξ 7→ ωξ and n 7→ εn with n finite.

Recall: When writing Aab + c with hereditary arguments, b, c are
written in normal form, a is treated as parameter.

In this case, ⟨ℓ/k⟩Aa(k, b) + c = Aa(ℓ, ⟨ℓ/k⟩b) + ⟨ℓ/k⟩c.

Definition
o′

k : N → εω is given recursively by:
▶ o′

k(0) = 0.
▶ o′

k(Aab + c) = ωεa+o′
k(b) + o′

k(c).

Order-types with hereditary arguments

Fact: Every ordinal below φ1ω can be written in terms of 0,
addition, ξ 7→ ωξ and n 7→ εn with n finite.

Recall: When writing Aab + c with hereditary arguments, b, c are
written in normal form, a is treated as parameter.

In this case, ⟨ℓ/k⟩Aa(k, b) + c = Aa(ℓ, ⟨ℓ/k⟩b) + ⟨ℓ/k⟩c.

Definition
o′

k : N → εω is given recursively by:
▶ o′

k(0) = 0.
▶ o′

k(Aab + c) = ωεa+o′
k(b) + o′

k(c).

Order-types with hereditary arguments

Fact: Every ordinal below φ1ω can be written in terms of 0,
addition, ξ 7→ ωξ and n 7→ εn with n finite.

Recall: When writing Aab + c with hereditary arguments, b, c are
written in normal form, a is treated as parameter.

In this case, ⟨ℓ/k⟩Aa(k, b) + c = Aa(ℓ, ⟨ℓ/k⟩b) + ⟨ℓ/k⟩c.

Definition
o′

k : N → εω is given recursively by:
▶ o′

k(0) = 0.

▶ o′
k(Aab + c) = ωεa+o′

k(b) + o′
k(c).

Order-types with hereditary arguments

Fact: Every ordinal below φ1ω can be written in terms of 0,
addition, ξ 7→ ωξ and n 7→ εn with n finite.

Recall: When writing Aab + c with hereditary arguments, b, c are
written in normal form, a is treated as parameter.

In this case, ⟨ℓ/k⟩Aa(k, b) + c = Aa(ℓ, ⟨ℓ/k⟩b) + ⟨ℓ/k⟩c.

Definition
o′

k : N → εω is given recursively by:
▶ o′

k(0) = 0.
▶ o′

k(Aab + c) = ωεa+o′
k(b) + o′

k(c).

Goodstein sequences for ACA′
0

Recall: The Goodstein sequence starting at m is defined by
▶ G0m = m
▶ Gi+1m = ⟨i + 3/i + 2⟩Gim − 1, if Gim > 0
▶ the sequence terminates if Gim = 0

Theorem (F-D, Weiermann)
The Ackermannian Goodstein process with hereditary arguments
always terminates, but this fact is not provable in ACA′

0.

Goodstein sequences for ACA′
0

Recall: The Goodstein sequence starting at m is defined by
▶ G0m = m
▶ Gi+1m = ⟨i + 3/i + 2⟩Gim − 1, if Gim > 0
▶ the sequence terminates if Gim = 0

Theorem (F-D, Weiermann)
The Ackermannian Goodstein process with hereditary arguments
always terminates, but this fact is not provable in ACA′

0.

Goodstein sequences for ACA+
0

Recall: When writing Aab + c with hereditary subscripts, a, b, c are
all written in normal form.

In this case, ⟨ℓ/k⟩Aa(k, b) + c = A⟨ℓ/k⟩a(ℓ, ⟨ℓ/k⟩b) + ⟨ℓ/k⟩c.

Definition
o+

k : N → φ20 is given recursively by:
▶ o+

k (0) = 0.

▶ o+
k (Aab + c) = ω

εo+
k (a)+o+

k (b)
+ o+

k (c).

Theorem (F-D, Gjetaj, Weiermann)
The Ackermannian Goodstein process with hereditary subscripts
always terminates, but this fact is not provable in ACA+

0 .

Goodstein sequences for ACA+
0

Recall: When writing Aab + c with hereditary subscripts, a, b, c are
all written in normal form.

In this case, ⟨ℓ/k⟩Aa(k, b) + c = A⟨ℓ/k⟩a(ℓ, ⟨ℓ/k⟩b) + ⟨ℓ/k⟩c.

Definition
o+

k : N → φ20 is given recursively by:
▶ o+

k (0) = 0.

▶ o+
k (Aab + c) = ω

εo+
k (a)+o+

k (b)
+ o+

k (c).

Theorem (F-D, Gjetaj, Weiermann)
The Ackermannian Goodstein process with hereditary subscripts
always terminates, but this fact is not provable in ACA+

0 .

Goodstein sequences for ACA+
0

Recall: When writing Aab + c with hereditary subscripts, a, b, c are
all written in normal form.

In this case, ⟨ℓ/k⟩Aa(k, b) + c = A⟨ℓ/k⟩a(ℓ, ⟨ℓ/k⟩b) + ⟨ℓ/k⟩c.

Definition
o+

k : N → φ20 is given recursively by:
▶ o+

k (0) = 0.

▶ o+
k (Aab + c) = ω

εo+
k (a)+o+

k (b)
+ o+

k (c).

Theorem (F-D, Gjetaj, Weiermann)
The Ackermannian Goodstein process with hereditary subscripts
always terminates, but this fact is not provable in ACA+

0 .

Goodstein sequences for ACA+
0

Recall: When writing Aab + c with hereditary subscripts, a, b, c are
all written in normal form.

In this case, ⟨ℓ/k⟩Aa(k, b) + c = A⟨ℓ/k⟩a(ℓ, ⟨ℓ/k⟩b) + ⟨ℓ/k⟩c.

Definition
o+

k : N → φ20 is given recursively by:
▶ o+

k (0) = 0.

▶ o+
k (Aab + c) = ω

εo+
k (a)+o+

k (b)
+ o+

k (c).

Theorem (F-D, Gjetaj, Weiermann)
The Ackermannian Goodstein process with hereditary subscripts
always terminates, but this fact is not provable in ACA+

0 .

Goodstein sequences for ACA+
0

Recall: When writing Aab + c with hereditary subscripts, a, b, c are
all written in normal form.

In this case, ⟨ℓ/k⟩Aa(k, b) + c = A⟨ℓ/k⟩a(ℓ, ⟨ℓ/k⟩b) + ⟨ℓ/k⟩c.

Definition
o+

k : N → φ20 is given recursively by:
▶ o+

k (0) = 0.

▶ o+
k (Aab + c) = ω

εo+
k (a)+o+

k (b)
+ o+

k (c).

Theorem (F-D, Gjetaj, Weiermann)
The Ackermannian Goodstein process with hereditary subscripts
always terminates, but this fact is not provable in ACA+

0 .

Sandwiching Ackermannian normal forms

Fix k, set Aab = Aa(k, b).

1. First approximation:
▶ Choose a1 maximal such that Aa10 ≤ m.

▶ Then, choose b1 maximal such that m1 := Aa1b1 ≤ m

2. Aa1b1 could be much smaller than m. If A0m1 ≤ m:

▶ Choose a2 maximal such that Aa2m1 ≤ m.

▶ Then, choose b2 maximal such that m2 := Aa2b2 ≤ m.

3. . . .

4. Finally, m ≡k Aanbn + c, where mn := Aanbn is such that
A0mn > m.

Sandwiching Ackermannian normal forms

Fix k, set Aab = Aa(k, b).

1. First approximation:
▶ Choose a1 maximal such that Aa10 ≤ m.

▶ Then, choose b1 maximal such that m1 := Aa1b1 ≤ m

2. Aa1b1 could be much smaller than m. If A0m1 ≤ m:

▶ Choose a2 maximal such that Aa2m1 ≤ m.

▶ Then, choose b2 maximal such that m2 := Aa2b2 ≤ m.

3. . . .

4. Finally, m ≡k Aanbn + c, where mn := Aanbn is such that
A0mn > m.

Sandwiching Ackermannian normal forms

Fix k, set Aab = Aa(k, b).

1. First approximation:
▶ Choose a1 maximal such that Aa10 ≤ m.

▶ Then, choose b1 maximal such that m1 := Aa1b1 ≤ m

2. Aa1b1 could be much smaller than m. If A0m1 ≤ m:

▶ Choose a2 maximal such that Aa2m1 ≤ m.

▶ Then, choose b2 maximal such that m2 := Aa2b2 ≤ m.

3. . . .

4. Finally, m ≡k Aanbn + c, where mn := Aanbn is such that
A0mn > m.

Sandwiching Ackermannian normal forms

Fix k, set Aab = Aa(k, b).

1. First approximation:
▶ Choose a1 maximal such that Aa10 ≤ m.

▶ Then, choose b1 maximal such that m1 := Aa1b1 ≤ m

2. Aa1b1 could be much smaller than m. If A0m1 ≤ m:

▶ Choose a2 maximal such that Aa2m1 ≤ m.

▶ Then, choose b2 maximal such that m2 := Aa2b2 ≤ m.

3. . . .

4. Finally, m ≡k Aanbn + c, where mn := Aanbn is such that
A0mn > m.

Sandwiching Ackermannian normal forms

Fix k, set Aab = Aa(k, b).

1. First approximation:
▶ Choose a1 maximal such that Aa10 ≤ m.

▶ Then, choose b1 maximal such that m1 := Aa1b1 ≤ m

2. Aa1b1 could be much smaller than m. If A0m1 ≤ m:

▶ Choose a2 maximal such that Aa2m1 ≤ m.

▶ Then, choose b2 maximal such that m2 := Aa2b2 ≤ m.

3. . . .

4. Finally, m ≡k Aanbn + c, where mn := Aanbn is such that
A0mn > m.

Sandwiching Ackermannian normal forms

Fix k, set Aab = Aa(k, b).

1. First approximation:
▶ Choose a1 maximal such that Aa10 ≤ m.

▶ Then, choose b1 maximal such that m1 := Aa1b1 ≤ m

2. Aa1b1 could be much smaller than m. If A0m1 ≤ m:

▶ Choose a2 maximal such that Aa2m1 ≤ m.

▶ Then, choose b2 maximal such that m2 := Aa2b2 ≤ m.

3. . . .

4. Finally, m ≡k Aanbn + c, where mn := Aanbn is such that
A0mn > m.

Order-types with sandwiching normal forms

Note: When writing Aab + c in sandwiching normal form, a, b, c
are all written in normal form.

In this case, ⟨ℓ/k⟩Aa(k, b) + c = A⟨ℓ/k⟩a(ℓ, ⟨ℓ/k⟩b) + ⟨ℓ/k⟩c.

Definition
o∗

k : N → Γ0 is given recursively by:
▶ o∗

k(0) = 0.
▶ o∗

k(Aab + c) = ϕo∗
k (a)o∗

k(b) + o∗
k(c).

Note: ϕ is the fixed-point free version of φ.

Theorem (Arai, F-D, Wainer, Weiermann)
The Ackermannian Goodstein process with sandwiching normal
forms always terminates, but this fact is not provable in ATR0.

Order-types with sandwiching normal forms

Note: When writing Aab + c in sandwiching normal form, a, b, c
are all written in normal form.

In this case, ⟨ℓ/k⟩Aa(k, b) + c = A⟨ℓ/k⟩a(ℓ, ⟨ℓ/k⟩b) + ⟨ℓ/k⟩c.

Definition
o∗

k : N → Γ0 is given recursively by:
▶ o∗

k(0) = 0.
▶ o∗

k(Aab + c) = ϕo∗
k (a)o∗

k(b) + o∗
k(c).

Note: ϕ is the fixed-point free version of φ.

Theorem (Arai, F-D, Wainer, Weiermann)
The Ackermannian Goodstein process with sandwiching normal
forms always terminates, but this fact is not provable in ATR0.

Order-types with sandwiching normal forms

Note: When writing Aab + c in sandwiching normal form, a, b, c
are all written in normal form.

In this case, ⟨ℓ/k⟩Aa(k, b) + c = A⟨ℓ/k⟩a(ℓ, ⟨ℓ/k⟩b) + ⟨ℓ/k⟩c.

Definition
o∗

k : N → Γ0 is given recursively by:
▶ o∗

k(0) = 0.

▶ o∗
k(Aab + c) = ϕo∗

k (a)o∗
k(b) + o∗

k(c).
Note: ϕ is the fixed-point free version of φ.

Theorem (Arai, F-D, Wainer, Weiermann)
The Ackermannian Goodstein process with sandwiching normal
forms always terminates, but this fact is not provable in ATR0.

Order-types with sandwiching normal forms

Note: When writing Aab + c in sandwiching normal form, a, b, c
are all written in normal form.

In this case, ⟨ℓ/k⟩Aa(k, b) + c = A⟨ℓ/k⟩a(ℓ, ⟨ℓ/k⟩b) + ⟨ℓ/k⟩c.

Definition
o∗

k : N → Γ0 is given recursively by:
▶ o∗

k(0) = 0.
▶ o∗

k(Aab + c) = ϕo∗
k (a)o∗

k(b) + o∗
k(c).

Note: ϕ is the fixed-point free version of φ.

Theorem (Arai, F-D, Wainer, Weiermann)
The Ackermannian Goodstein process with sandwiching normal
forms always terminates, but this fact is not provable in ATR0.

Order-types with sandwiching normal forms

Note: When writing Aab + c in sandwiching normal form, a, b, c
are all written in normal form.

In this case, ⟨ℓ/k⟩Aa(k, b) + c = A⟨ℓ/k⟩a(ℓ, ⟨ℓ/k⟩b) + ⟨ℓ/k⟩c.

Definition
o∗

k : N → Γ0 is given recursively by:
▶ o∗

k(0) = 0.
▶ o∗

k(Aab + c) = ϕo∗
k (a)o∗

k(b) + o∗
k(c).

Note: ϕ is the fixed-point free version of φ.

Theorem (Arai, F-D, Wainer, Weiermann)
The Ackermannian Goodstein process with sandwiching normal
forms always terminates, but this fact is not provable in ATR0.

Order-types with sandwiching normal forms

Note: When writing Aab + c in sandwiching normal form, a, b, c
are all written in normal form.

In this case, ⟨ℓ/k⟩Aa(k, b) + c = A⟨ℓ/k⟩a(ℓ, ⟨ℓ/k⟩b) + ⟨ℓ/k⟩c.

Definition
o∗

k : N → Γ0 is given recursively by:
▶ o∗

k(0) = 0.
▶ o∗

k(Aab + c) = ϕo∗
k (a)o∗

k(b) + o∗
k(c).

Note: ϕ is the fixed-point free version of φ.

Theorem (Arai, F-D, Wainer, Weiermann)
The Ackermannian Goodstein process with sandwiching normal
forms always terminates, but this fact is not provable in ATR0.

Optimality of Ackermannian normal forms

Question: Can we use the parametrized Ackermann function to
define Goodstein processes of greater proof-theoretic strength?

Answer: No, because the sandwiching process yields maximality
under base change.

Theorem (Maximality of base change)
Given any base-k Ackermannian term τ , ℓ ≥ k, and m = |τ |, we
have that

⟨ℓ/k⟩τ ≤ ⟨ℓ/k⟩m

(where ⟨ℓ/k⟩x denotes the base-change for the sandwiching normal
forms).

Optimality of Ackermannian normal forms

Question: Can we use the parametrized Ackermann function to
define Goodstein processes of greater proof-theoretic strength?

Answer: No, because the sandwiching process yields maximality
under base change.

Theorem (Maximality of base change)
Given any base-k Ackermannian term τ , ℓ ≥ k, and m = |τ |, we
have that

⟨ℓ/k⟩τ ≤ ⟨ℓ/k⟩m

(where ⟨ℓ/k⟩x denotes the base-change for the sandwiching normal
forms).

Optimality of Ackermannian normal forms

Question: Can we use the parametrized Ackermann function to
define Goodstein processes of greater proof-theoretic strength?

Answer: No, because the sandwiching process yields maximality
under base change.

Theorem (Maximality of base change)
Given any base-k Ackermannian term τ , ℓ ≥ k, and m = |τ |, we
have that

⟨ℓ/k⟩τ ≤ ⟨ℓ/k⟩m

(where ⟨ℓ/k⟩x denotes the base-change for the sandwiching normal
forms).

Goodstein walks

A Goodstein walk (starting on m) is any sequence (mi)i<α, where
α ≤ ω and

1. m0 = m

2. if mi > 0 we choose any base-(i + 2) term τ with |τ | = mi
and set

mi+1 = |⟨i + 3⟩mi | − 1

3. if mi > 0 the sequence terminates

Goodstein walks

A Goodstein walk (starting on m) is any sequence (mi)i<α, where
α ≤ ω and

1. m0 = m

2. if mi > 0 we choose any base-(i + 2) term τ with |τ | = mi
and set

mi+1 = |⟨i + 3⟩mi | − 1

3. if mi > 0 the sequence terminates

Goodstein walks

A Goodstein walk (starting on m) is any sequence (mi)i<α, where
α ≤ ω and

1. m0 = m

2. if mi > 0 we choose any base-(i + 2) term τ with |τ | = mi
and set

mi+1 = |⟨i + 3⟩mi | − 1

3. if mi > 0 the sequence terminates

Goodstein walks

A Goodstein walk (starting on m) is any sequence (mi)i<α, where
α ≤ ω and

1. m0 = m

2. if mi > 0 we choose any base-(i + 2) term τ with |τ | = mi
and set

mi+1 = |⟨i + 3⟩mi | − 1

3. if mi > 0 the sequence terminates

Termination of Goodstein walks
Theorem
Every Ackermannian Goodstein walk terminates in finite time.

Proof.
Let (mi)i<α be a Goodstein walk. We prove by induction that
mi ≤ Gim.

Base case: m0 = m = G0m

Inductive step: We have written mi = |τ |.

mi+1 = |⟨i + 3/i + 2⟩τ | − 1
≤ ⟨i + 3/i + 2⟩mi − 1
≤ih ⟨i + 3/i + 2⟩Gim − 1
= Gi+1m

Termination of Goodstein walks
Theorem
Every Ackermannian Goodstein walk terminates in finite time.

Proof.
Let (mi)i<α be a Goodstein walk. We prove by induction that
mi ≤ Gim.

Base case: m0 = m = G0m

Inductive step: We have written mi = |τ |.

mi+1 = |⟨i + 3/i + 2⟩τ | − 1
≤ ⟨i + 3/i + 2⟩mi − 1
≤ih ⟨i + 3/i + 2⟩Gim − 1
= Gi+1m

Termination of Goodstein walks
Theorem
Every Ackermannian Goodstein walk terminates in finite time.

Proof.
Let (mi)i<α be a Goodstein walk. We prove by induction that
mi ≤ Gim.

Base case: m0 = m = G0m

Inductive step: We have written mi = |τ |.

mi+1 = |⟨i + 3/i + 2⟩τ | − 1
≤ ⟨i + 3/i + 2⟩mi − 1
≤ih ⟨i + 3/i + 2⟩Gim − 1
= Gi+1m

Termination of Goodstein walks
Theorem
Every Ackermannian Goodstein walk terminates in finite time.

Proof.
Let (mi)i<α be a Goodstein walk. We prove by induction that
mi ≤ Gim.

Base case: m0 = m = G0m

Inductive step: We have written mi = |τ |.

mi+1 = |⟨i + 3/i + 2⟩τ | − 1
≤ ⟨i + 3/i + 2⟩mi − 1
≤ih ⟨i + 3/i + 2⟩Gim − 1
= Gi+1m

Termination of Goodstein walks
Theorem
Every Ackermannian Goodstein walk terminates in finite time.

Proof.
Let (mi)i<α be a Goodstein walk. We prove by induction that
mi ≤ Gim.

Base case: m0 = m = G0m

Inductive step: We have written mi = |τ |.

mi+1 = |⟨i + 3/i + 2⟩τ | − 1

≤ ⟨i + 3/i + 2⟩mi − 1
≤ih ⟨i + 3/i + 2⟩Gim − 1
= Gi+1m

Termination of Goodstein walks
Theorem
Every Ackermannian Goodstein walk terminates in finite time.

Proof.
Let (mi)i<α be a Goodstein walk. We prove by induction that
mi ≤ Gim.

Base case: m0 = m = G0m

Inductive step: We have written mi = |τ |.

mi+1 = |⟨i + 3/i + 2⟩τ | − 1
≤ ⟨i + 3/i + 2⟩mi − 1

≤ih ⟨i + 3/i + 2⟩Gim − 1
= Gi+1m

Termination of Goodstein walks
Theorem
Every Ackermannian Goodstein walk terminates in finite time.

Proof.
Let (mi)i<α be a Goodstein walk. We prove by induction that
mi ≤ Gim.

Base case: m0 = m = G0m

Inductive step: We have written mi = |τ |.

mi+1 = |⟨i + 3/i + 2⟩τ | − 1
≤ ⟨i + 3/i + 2⟩mi − 1
≤ih ⟨i + 3/i + 2⟩Gim − 1

= Gi+1m

Termination of Goodstein walks
Theorem
Every Ackermannian Goodstein walk terminates in finite time.

Proof.
Let (mi)i<α be a Goodstein walk. We prove by induction that
mi ≤ Gim.

Base case: m0 = m = G0m

Inductive step: We have written mi = |τ |.

mi+1 = |⟨i + 3/i + 2⟩τ | − 1
≤ ⟨i + 3/i + 2⟩mi − 1
≤ih ⟨i + 3/i + 2⟩Gim − 1
= Gi+1m

Termination of Goodstein walks
Theorem
Every Ackermannian Goodstein walk terminates in finite time.

Proof.
Let (mi)i<α be a Goodstein walk. We prove by induction that
mi ≤ Gim.

Base case: m0 = m = G0m

Inductive step: We have written mi = |τ |.

mi+1 = |⟨i + 3/i + 2⟩τ | − 1
≤ ⟨i + 3/i + 2⟩mi − 1
≤ih ⟨i + 3/i + 2⟩Gim − 1
= Gi+1m

What lies beyond

Parametrized fast-growing hierarchy Aα(k, b) = Aαb:

▶ Aα(−1) = 1

▶ A0b = b + 1

▶ Aαb = Ak
α[b]Aα(b − 1) (α ̸= 0)

Define Ak(ωα + b) := Aαb

What lies beyond

Parametrized fast-growing hierarchy Aα(k, b) = Aαb:

▶ Aα(−1) = 1

▶ A0b = b + 1

▶ Aαb = Ak
α[b]Aα(b − 1) (α ̸= 0)

Define Ak(ωα + b) := Aαb

What lies beyond

Parametrized fast-growing hierarchy Aα(k, b) = Aαb:

▶ Aα(−1) = 1

▶ A0b = b + 1

▶ Aαb = Ak
α[b]Aα(b − 1) (α ̸= 0)

Define Ak(ωα + b) := Aαb

What lies beyond

Parametrized fast-growing hierarchy Aα(k, b) = Aαb:

▶ Aα(−1) = 1

▶ A0b = b + 1

▶ Aαb = Ak
α[b]Aα(b − 1) (α ̸= 0)

Define Ak(ωα + b) := Aαb

Fast-growing normal forms

Fact: Given m ≥ 0 and b ≥ 0, there exists a maximal ξ such that
Ak(ξ) ≤ m and ξ has maximal coefficient ≥ b.

(Example: ωω2 + ωω·3 · 2 + 1 has maximal coefficient 3)

Sandwiching for m: Sequence (ξ0, . . . , ξn) such that

1. ξ0 = 0

2. ξi+1 is maximal such that

▶ Ak(ξi+1) ≤ m

▶ ξi+1 has maximal coefficient at least Ak(ξi)

Fast-growing normal forms

Fact: Given m ≥ 0 and b ≥ 0, there exists a maximal ξ such that
Ak(ξ) ≤ m and ξ has maximal coefficient ≥ b.

(Example: ωω2 + ωω·3 · 2 + 1 has maximal coefficient 3)

Sandwiching for m: Sequence (ξ0, . . . , ξn) such that

1. ξ0 = 0

2. ξi+1 is maximal such that

▶ Ak(ξi+1) ≤ m

▶ ξi+1 has maximal coefficient at least Ak(ξi)

Fast-growing normal forms

Fact: Given m ≥ 0 and b ≥ 0, there exists a maximal ξ such that
Ak(ξ) ≤ m and ξ has maximal coefficient ≥ b.

(Example: ωω2 + ωω·3 · 2 + 1 has maximal coefficient 3)

Sandwiching for m: Sequence (ξ0, . . . , ξn) such that

1. ξ0 = 0

2. ξi+1 is maximal such that

▶ Ak(ξi+1) ≤ m

▶ ξi+1 has maximal coefficient at least Ak(ξi)

Fast-growing normal forms

Fact: Given m ≥ 0 and b ≥ 0, there exists a maximal ξ such that
Ak(ξ) ≤ m and ξ has maximal coefficient ≥ b.

(Example: ωω2 + ωω·3 · 2 + 1 has maximal coefficient 3)

Sandwiching for m: Sequence (ξ0, . . . , ξn) such that

1. ξ0 = 0

2. ξi+1 is maximal such that

▶ Ak(ξi+1) ≤ m

▶ ξi+1 has maximal coefficient at least Ak(ξi)

Fast-growing normal forms

Fact: Given m ≥ 0 and b ≥ 0, there exists a maximal ξ such that
Ak(ξ) ≤ m and ξ has maximal coefficient ≥ b.

(Example: ωω2 + ωω·3 · 2 + 1 has maximal coefficient 3)

Sandwiching for m: Sequence (ξ0, . . . , ξn) such that

1. ξ0 = 0

2. ξi+1 is maximal such that

▶ Ak(ξi+1) ≤ m

▶ ξi+1 has maximal coefficient at least Ak(ξi)

Goodstein processes for the fast-growing hierarchy

We can define a base change operation by replacing each instance
of Ak(ζ) by Ak+1(ζ) in every coefficient of ξ in Ak(ξ)

Does this process terminate?

Work in progress: This Goodstein process (or a suitable variant)
yields a maximal Goodstein principle for ID1.

Ordinal mapping: Replace each instance of ω by ω1 and each
instance of Ak by ϑ : Ord → ω1

Goodstein processes for the fast-growing hierarchy

We can define a base change operation by replacing each instance
of Ak(ζ) by Ak+1(ζ) in every coefficient of ξ in Ak(ξ)

Does this process terminate?

Work in progress: This Goodstein process (or a suitable variant)
yields a maximal Goodstein principle for ID1.

Ordinal mapping: Replace each instance of ω by ω1 and each
instance of Ak by ϑ : Ord → ω1

Goodstein processes for the fast-growing hierarchy

We can define a base change operation by replacing each instance
of Ak(ζ) by Ak+1(ζ) in every coefficient of ξ in Ak(ξ)

Does this process terminate?

Work in progress: This Goodstein process (or a suitable variant)
yields a maximal Goodstein principle for ID1.

Ordinal mapping: Replace each instance of ω by ω1 and each
instance of Ak by ϑ : Ord → ω1

Goodstein processes for the fast-growing hierarchy

We can define a base change operation by replacing each instance
of Ak(ζ) by Ak+1(ζ) in every coefficient of ξ in Ak(ξ)

Does this process terminate?

Work in progress: This Goodstein process (or a suitable variant)
yields a maximal Goodstein principle for ID1.

Ordinal mapping: Replace each instance of ω by ω1 and each
instance of Ak by ϑ

: Ord → ω1

Goodstein processes for the fast-growing hierarchy

We can define a base change operation by replacing each instance
of Ak(ζ) by Ak+1(ζ) in every coefficient of ξ in Ak(ξ)

Does this process terminate?

Work in progress: This Goodstein process (or a suitable variant)
yields a maximal Goodstein principle for ID1.

Ordinal mapping: Replace each instance of ω by ω1 and each
instance of Ak by ϑ : Ord → ω1

Concluding remarks

▶ Goodstein-like processes can readily be generated by choosing
different functions with which to represent natural numbers.

▶ Even within a fixed notation system, the proof-theoretic
strength of termination may vary wildly depending on the
precise setup of the Goodstein process.

▶ However, this proof-theoretic strength has an upper bound
given by using ‘optimal’ normal forms.

▶ Question. Do we still obtain termination for Goodstein walks:

▶ If we add multiplication to Ackermannian notation?

▶ If we replace the Ackermann function by term exponentiation
of the form στ ?

Concluding remarks

▶ Goodstein-like processes can readily be generated by choosing
different functions with which to represent natural numbers.

▶ Even within a fixed notation system, the proof-theoretic
strength of termination may vary wildly depending on the
precise setup of the Goodstein process.

▶ However, this proof-theoretic strength has an upper bound
given by using ‘optimal’ normal forms.

▶ Question. Do we still obtain termination for Goodstein walks:

▶ If we add multiplication to Ackermannian notation?

▶ If we replace the Ackermann function by term exponentiation
of the form στ ?

Concluding remarks

▶ Goodstein-like processes can readily be generated by choosing
different functions with which to represent natural numbers.

▶ Even within a fixed notation system, the proof-theoretic
strength of termination may vary wildly depending on the
precise setup of the Goodstein process.

▶ However, this proof-theoretic strength has an upper bound
given by using ‘optimal’ normal forms.

▶ Question. Do we still obtain termination for Goodstein walks:

▶ If we add multiplication to Ackermannian notation?

▶ If we replace the Ackermann function by term exponentiation
of the form στ ?

Concluding remarks

▶ Goodstein-like processes can readily be generated by choosing
different functions with which to represent natural numbers.

▶ Even within a fixed notation system, the proof-theoretic
strength of termination may vary wildly depending on the
precise setup of the Goodstein process.

▶ However, this proof-theoretic strength has an upper bound
given by using ‘optimal’ normal forms.

▶ Question. Do we still obtain termination for Goodstein walks:

▶ If we add multiplication to Ackermannian notation?

▶ If we replace the Ackermann function by term exponentiation
of the form στ ?

Concluding remarks

▶ Goodstein-like processes can readily be generated by choosing
different functions with which to represent natural numbers.

▶ Even within a fixed notation system, the proof-theoretic
strength of termination may vary wildly depending on the
precise setup of the Goodstein process.

▶ However, this proof-theoretic strength has an upper bound
given by using ‘optimal’ normal forms.

▶ Question. Do we still obtain termination for Goodstein walks:

▶ If we add multiplication to Ackermannian notation?

▶ If we replace the Ackermann function by term exponentiation
of the form στ ?

Concluding remarks

▶ Goodstein-like processes can readily be generated by choosing
different functions with which to represent natural numbers.

▶ Even within a fixed notation system, the proof-theoretic
strength of termination may vary wildly depending on the
precise setup of the Goodstein process.

▶ However, this proof-theoretic strength has an upper bound
given by using ‘optimal’ normal forms.

▶ Question. Do we still obtain termination for Goodstein walks:

▶ If we add multiplication to Ackermannian notation?

▶ If we replace the Ackermann function by term exponentiation
of the form στ ?

Thank you!

