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1928. Ackermann discovers a ‘simple’ function that is
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1947. Goodstein defines the hyperoperation function,
a variant of the Ackermann function

1982. Kirby and Paris show that Goodstein’s
principle is independent from Peano arithmetic
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Goodstein’s principle

1. G0m = m
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∼ ωωω + ωω + 1

4. . . .

5. Gi∗m = 0

∼ 0
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Elements of a Goodstein process

1. A notation system for natural numbers

2. A notion of normal form m 7→ nfk(m)

3. A base change operation m 7→ ⟨ℓ/k⟩m
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Parametrized Ackermann functions

Fix k and define Aa(k, b) = Aab recursively:

▶ Aa(−1) = 1 (auxiliary value)

▶ A0b = kb

▶ Aa+1b = Ak
aAa+1(b − 1) (b ∈ N)

Base-k Ackermannian terms: Built from 0, x + y , Ax (k, y).
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Ackermannian normal forms

Fix k, set Aab = Aa(k, b).

Goal: Write m = Aab + c in a canonical way.

1. Choose a maximal such that Aa0 ≤ m.

2. Then, choose b maximal such that Aab ≤ m.

3. Write m = Aab + c. This is the (simple) Ackermannian
representation for m.
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Term representation

Suppose m = Aab + c in Ackermannian representation and k ≥ 2.
Goal: Assign a term nfk(m) to m.

Option 1 (hereditary subscripts): Treat b as unary, write a, c in
normal form.

Option 2 (hereditary argument): Treat a as unary, write b, c in
normal form.

Option 3 (fully hereditary): Write a, b, c in normal form.

Example: 6 = A10 + 2 = A10 + A0A00 = AA000 + A0A00
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Base-change operations

1. ⟨ℓ/k⟩(Aa(k, b) + c) = A⟨ℓ/k⟩a(ℓ, b) + ⟨ℓ/k⟩c
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Ackermannian Goodstein sequences

Fix m ∈ N and define a sequence (Gim)i<α:

▶ G0m = m

▶ if Gim > 0, Gi+1m = ⟨i + 3/i + 2⟩Gim − 1

▶ if Gim = 0, Gi+1m is undefined.
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2. If so, what is the proof-theoretic strength of termination?

3. What is the maximal proof-theoretic strength of termination
of an Ackermannian Goodstein process?
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Predicative theories of second order arithmetic

Language of SOA: Extend the language of Peano arithmetic with
t ∈ X and ∀X ⊆ N φ.

ACA0: Induction axiom plus “for every set X , the Turing
jump of X exists.”

ACA′
0: ACA0 plus “for every set X and n, the nth Turing

jump of X exists.”

ACA+
0 : ACA0 plus “for every set X , the ωth Turing jump of

X exists.”

ATR0: ACA0 plus “for every set X and ordinal α, the αth

Turing jump of X exists.”
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The Feferman-Schütte ordinal

For ordinals α, β define:

▶ φ0β = ωβ

▶ For α > 0, φαβ enumerates {ξ : ∀γ < α (φγξ = ξ)}

We usually write εα instead of φ1α. These are the ordinals ξ
s.t. ωξ = ξ.

Fact: Every ξ > 0 can be written uniquely in the form φαβ + γ,
with γ < ξ and β < φαβ.

Γ0: First fixed point of γ 7→ φγ0.

If ξ < Γ0, then α, β, γ < ξ.
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Proof-theoretic strength
Let ξ[n] denote the nth element of the fundamental sequence for
ξ < Γ0.
Define ξJnK = ξ[1][2] . . . [n].

Fact: For all ξ < Γ0 there is i s.t. ξJiK = 0.
In this talk, T has proof-theoretic strength Λ if:

1. T does not prove ∀ξ < Λ∃i (ξJiK = 0)

2. For eacy α < Λ, T proves ∀ξ < α∃i (ξJiK = 0)

Theorem

1. ACA0 has proof-theoretic strength ε0 (= φ10)
2. ACA′

0 has proof-theoretic strength εω (= φ1ω)
3. ACA+

0 has proof-theoretic strength φ20
4. ATR0 has proof-theoretic strength Γ0
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Proving termination and independence

Strategy: Define o : [2, ∞) × N → Λ with the following properties.

1. o2(m) > o3(G1m) > o4(G2m) > o5(G3m) . . .

2. oi+3(Gi+1m) ≥ oi+2(Gim)[i + 1]

▶ Item 1 suffices to prove that the Goodstein process terminates.

▶ Item 2 suffices to prove that the Goodstein process is at least
as slow as stepping down the fundamental sequences.

Note: This requires fundamental sequences with the
Bachmann property, which we have.
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Ackermann vs. Veblen

▶ Ackermannian normal form: Aa(k, b) + c

▶ Veblen normal form: φαβ + γ

▶ Ackermannian recursion: Aa+1(k, b + 1) = Ak
aAa+1(k, b)

▶ Fundamental sequences: φα+1(β + 1)[k] = φk
α(φα+1β + 1)

Thus, it is tempting to set ok(Aa(k, b) + c) = φok(a)ok(b) + ok(c).

But we can get away with much less!
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Order-types with hereditary subscripts

Fact: Every ordinal below ε0 can be written in terms of 0,
addition, and ξ 7→ ωξ.

Recall: When writing Aab + c with hereditary subscripts, a, c are
written in normal form, b is treated as parameter.

In this case, ⟨ℓ/k⟩Aa(k, b) + c = A⟨ℓ/k⟩a(ℓ, b) + ⟨ℓ/k⟩c.

Definition
ok : N → ε0 is given recursively by:
▶ ok(0) = 0.
▶ ok(Aab + c) = ωω·ok(a)+b + ok(c).
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Goodstein sequences for ACA0

Recall: The Goodstein sequence starting at m is defined by
▶ G0m = m
▶ Gi+1m = ⟨i + 3/i + 2⟩Gim − 1, if Gim > 0
▶ the sequence terminates if Gim = 0

Theorem (F-D, Gjetaj, Weiermann)
The Ackermannian Goodstein process with hereditary subscripts
always terminates, but this fact is not provable in ACA0.

Proof idea. The mapping ok satisfies the required properties for
proving these facts.
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Sandwiching Ackermannian normal forms

Fix k, set Aab = Aa(k, b).

1. First approximation:
▶ Choose a1 maximal such that Aa10 ≤ m.

▶ Then, choose b1 maximal such that m1 := Aa1b1 ≤ m

2. Aa1b1 could be much smaller than m. If A0m1 ≤ m:

▶ Choose a2 maximal such that Aa2m1 ≤ m.

▶ Then, choose b2 maximal such that m2 := Aa2b2 ≤ m.

3. . . .

4. Finally, m ≡k Aanbn + c, where mn := Aanbn is such that
A0mn > m.
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Order-types with sandwiching normal forms

Note: When writing Aab + c in sandwiching normal form, a, b, c
are all written in normal form.

In this case, ⟨ℓ/k⟩Aa(k, b) + c = A⟨ℓ/k⟩a(ℓ, ⟨ℓ/k⟩b) + ⟨ℓ/k⟩c.

Definition
o∗

k : N → Γ0 is given recursively by:
▶ o∗

k(0) = 0.
▶ o∗

k(Aab + c) = ϕo∗
k (a)o∗

k(b) + o∗
k(c).

Note: ϕ is the fixed-point free version of φ.

Theorem (Arai, F-D, Wainer, Weiermann)
The Ackermannian Goodstein process with sandwiching normal
forms always terminates, but this fact is not provable in ATR0.
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Optimality of Ackermannian normal forms

Question: Can we use the parametrized Ackermann function to
define Goodstein processes of greater proof-theoretic strength?

Answer: No, because the sandwiching process yields maximality
under base change.

Theorem (Maximality of base change)
Given any base-k Ackermannian term τ , ℓ ≥ k, and m = |τ |, we
have that

⟨ℓ/k⟩τ ≤ ⟨ℓ/k⟩m

(where ⟨ℓ/k⟩x denotes the base-change for the sandwiching normal
forms).
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Goodstein walks

A Goodstein walk (starting on m) is any sequence (mi)i<α, where
α ≤ ω and

1. m0 = m

2. if mi > 0 we choose any base-(i + 2) term τ with |τ | = mi
and set

mi+1 = |⟨i + 3⟩mi | − 1

3. if mi > 0 the sequence terminates
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Termination of Goodstein walks
Theorem
Every Ackermannian Goodstein walk terminates in finite time.

Proof.
Let (mi)i<α be a Goodstein walk. We prove by induction that
mi ≤ Gim.

Base case: m0 = m = G0m

Inductive step: We have written mi = |τ |.

mi+1 = |⟨i + 3/i + 2⟩τ | − 1
≤ ⟨i + 3/i + 2⟩mi − 1
≤ih ⟨i + 3/i + 2⟩Gim − 1
= Gi+1m



Termination of Goodstein walks
Theorem
Every Ackermannian Goodstein walk terminates in finite time.

Proof.
Let (mi)i<α be a Goodstein walk. We prove by induction that
mi ≤ Gim.

Base case: m0 = m = G0m

Inductive step: We have written mi = |τ |.

mi+1 = |⟨i + 3/i + 2⟩τ | − 1
≤ ⟨i + 3/i + 2⟩mi − 1
≤ih ⟨i + 3/i + 2⟩Gim − 1
= Gi+1m



Termination of Goodstein walks
Theorem
Every Ackermannian Goodstein walk terminates in finite time.

Proof.
Let (mi)i<α be a Goodstein walk. We prove by induction that
mi ≤ Gim.

Base case: m0 = m = G0m

Inductive step: We have written mi = |τ |.

mi+1 = |⟨i + 3/i + 2⟩τ | − 1
≤ ⟨i + 3/i + 2⟩mi − 1
≤ih ⟨i + 3/i + 2⟩Gim − 1
= Gi+1m



Termination of Goodstein walks
Theorem
Every Ackermannian Goodstein walk terminates in finite time.

Proof.
Let (mi)i<α be a Goodstein walk. We prove by induction that
mi ≤ Gim.

Base case: m0 = m = G0m

Inductive step: We have written mi = |τ |.

mi+1 = |⟨i + 3/i + 2⟩τ | − 1
≤ ⟨i + 3/i + 2⟩mi − 1
≤ih ⟨i + 3/i + 2⟩Gim − 1
= Gi+1m



Termination of Goodstein walks
Theorem
Every Ackermannian Goodstein walk terminates in finite time.

Proof.
Let (mi)i<α be a Goodstein walk. We prove by induction that
mi ≤ Gim.

Base case: m0 = m = G0m

Inductive step: We have written mi = |τ |.

mi+1 = |⟨i + 3/i + 2⟩τ | − 1

≤ ⟨i + 3/i + 2⟩mi − 1
≤ih ⟨i + 3/i + 2⟩Gim − 1
= Gi+1m



Termination of Goodstein walks
Theorem
Every Ackermannian Goodstein walk terminates in finite time.

Proof.
Let (mi)i<α be a Goodstein walk. We prove by induction that
mi ≤ Gim.

Base case: m0 = m = G0m

Inductive step: We have written mi = |τ |.

mi+1 = |⟨i + 3/i + 2⟩τ | − 1
≤ ⟨i + 3/i + 2⟩mi − 1

≤ih ⟨i + 3/i + 2⟩Gim − 1
= Gi+1m



Termination of Goodstein walks
Theorem
Every Ackermannian Goodstein walk terminates in finite time.

Proof.
Let (mi)i<α be a Goodstein walk. We prove by induction that
mi ≤ Gim.

Base case: m0 = m = G0m

Inductive step: We have written mi = |τ |.

mi+1 = |⟨i + 3/i + 2⟩τ | − 1
≤ ⟨i + 3/i + 2⟩mi − 1
≤ih ⟨i + 3/i + 2⟩Gim − 1

= Gi+1m



Termination of Goodstein walks
Theorem
Every Ackermannian Goodstein walk terminates in finite time.

Proof.
Let (mi)i<α be a Goodstein walk. We prove by induction that
mi ≤ Gim.

Base case: m0 = m = G0m

Inductive step: We have written mi = |τ |.

mi+1 = |⟨i + 3/i + 2⟩τ | − 1
≤ ⟨i + 3/i + 2⟩mi − 1
≤ih ⟨i + 3/i + 2⟩Gim − 1
= Gi+1m



Termination of Goodstein walks
Theorem
Every Ackermannian Goodstein walk terminates in finite time.

Proof.
Let (mi)i<α be a Goodstein walk. We prove by induction that
mi ≤ Gim.

Base case: m0 = m = G0m

Inductive step: We have written mi = |τ |.

mi+1 = |⟨i + 3/i + 2⟩τ | − 1
≤ ⟨i + 3/i + 2⟩mi − 1
≤ih ⟨i + 3/i + 2⟩Gim − 1
= Gi+1m



What lies beyond

Parametrized fast-growing hierarchy Aα(k, b) = Aαb:

▶ Aα(−1) = 1

▶ A0b = b + 1

▶ Aαb = Ak
α[b]Aα(b − 1) (α ̸= 0)

Define Ak(ωα + b) := Aαb
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Fast-growing normal forms

Fact: Given m ≥ 0 and b ≥ 0, there exists a maximal ξ such that
Ak(ξ) ≤ m and ξ has maximal coefficient ≥ b.

(Example: ωω2 + ωω·3 · 2 + 1 has maximal coefficient 3)

Sandwiching for m: Sequence (ξ0, . . . , ξn) such that

1. ξ0 = 0

2. ξi+1 is maximal such that

▶ Ak(ξi+1) ≤ m

▶ ξi+1 has maximal coefficient at least Ak(ξi)
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Goodstein processes for the fast-growing hierarchy

We can define a base change operation by replacing each instance
of Ak(ζ) by Ak+1(ζ) in every coefficient of ξ in Ak(ξ)

Does this process terminate?

Work in progress: This Goodstein process (or a suitable variant)
yields a maximal Goodstein principle for ID1.

Ordinal mapping: Replace each instance of ω by ω1 and each
instance of Ak by ϑ : Ord → ω1



Goodstein processes for the fast-growing hierarchy

We can define a base change operation by replacing each instance
of Ak(ζ) by Ak+1(ζ) in every coefficient of ξ in Ak(ξ)

Does this process terminate?

Work in progress: This Goodstein process (or a suitable variant)
yields a maximal Goodstein principle for ID1.

Ordinal mapping: Replace each instance of ω by ω1 and each
instance of Ak by ϑ : Ord → ω1



Goodstein processes for the fast-growing hierarchy

We can define a base change operation by replacing each instance
of Ak(ζ) by Ak+1(ζ) in every coefficient of ξ in Ak(ξ)

Does this process terminate?

Work in progress: This Goodstein process (or a suitable variant)
yields a maximal Goodstein principle for ID1.

Ordinal mapping: Replace each instance of ω by ω1 and each
instance of Ak by ϑ : Ord → ω1



Goodstein processes for the fast-growing hierarchy

We can define a base change operation by replacing each instance
of Ak(ζ) by Ak+1(ζ) in every coefficient of ξ in Ak(ξ)

Does this process terminate?

Work in progress: This Goodstein process (or a suitable variant)
yields a maximal Goodstein principle for ID1.

Ordinal mapping: Replace each instance of ω by ω1 and each
instance of Ak by ϑ

: Ord → ω1



Goodstein processes for the fast-growing hierarchy

We can define a base change operation by replacing each instance
of Ak(ζ) by Ak+1(ζ) in every coefficient of ξ in Ak(ξ)

Does this process terminate?

Work in progress: This Goodstein process (or a suitable variant)
yields a maximal Goodstein principle for ID1.

Ordinal mapping: Replace each instance of ω by ω1 and each
instance of Ak by ϑ : Ord → ω1



Concluding remarks

▶ Goodstein-like processes can readily be generated by choosing
different functions with which to represent natural numbers.

▶ Even within a fixed notation system, the proof-theoretic
strength of termination may vary wildly depending on the
precise setup of the Goodstein process.

▶ However, this proof-theoretic strength has an upper bound
given by using ‘optimal’ normal forms.

▶ Question. Do we still obtain termination for Goodstein walks:

▶ If we add multiplication to Ackermannian notation?

▶ If we replace the Ackermann function by term exponentiation
of the form στ ?
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Thank you!


