
Kripke-Platek set theory

Fedor Pakhomov
Ghent University

Steklov Mathematical Institute, Moscow
pakhfn@gmail.com

Wuhan, December 1st, 2020



Σ1-formulas in arithmetic

Consider the standard model of first-order arithmetic
pN,ď, 0, 1,`,ˆq, we will denote it simply as N.

First-order arithmetical formula ϕ is a ∆0-formula if all quantifiers
in ϕ are bounded, i.e. all occurences of quantifiers are of the form

p@x ď tqψpxq ” @xpx ď t Ñ ψpxqq or pDx ď tqψpxq ” Dxpx ď t^ψpxqq,

where x R FV pψq.

Examples:
Formulas x “ x , Dy ď xpy ` y “ xq,
p@y ď xqp@z ď yqpyz “ x Ñ z “ 1q are ∆0.
Formulas Dypy ` y “ xq, p@x ď x ` xqx “ 0 aren’t ∆0.

The class Σ1 consists of all formulas of the form
Dx1, . . . , xn ϕpx1, . . . , xnq, where ϕ P ∆0.



Computability and Σ1-definability

A set A Ď Nk is defined by ϕpx1, . . . , xkq if for any n1, . . . , nk P N
xn1, . . . , nky P A ðñ N |ù ϕpn1, . . . , nkq.

A function f : Nk Ñ N is defined by ϕpx1, . . . , xk , yq if for any
n1, . . . , nk ,m P N

f pn1, . . . , nkq “ m ðñ N |ù ϕpn1, . . . , nk ,mq.

A partial function f : AÑ N, A Ď Nk is defined by ϕpx1, . . . , xk , yq
if for any n1, . . . , nk ,m P N

xn1, . . . , nky P A & f pn1, . . . , nkq “ m ðñ N |ù ϕpn1, . . . , nk ,mq.

Proposition

A set A Ď Nk is computably enumerable iff it is Σ1-definable in N.
A set A Ď Nk is computable iff both it and its complement are
Σ1-definable in N. A function f (partial function f ) on N is
computable iff it is Σ1-definable in N.



Computability in HF
The set of all hereditary finite sets

HF “ HY PpHq Y PpPpHqq Y . . .Y PnpHq Y . . .

We identify HF with the structure pHF, Pq.

A set-theoretic formula ϕ is ∆0 if all quantifiers in ϕ are bounded,
i.e. all occurrences of quantifiers are of the form

p@x P yqψpxq ” @xpx P y Ñ ψpxqq or pDx P yqψpxq ” Dxpx P y^ψpxqq,

where x and y are distinct variables.

Proposition

A set A Ď HFk is computably enumerable iff it is Σ1-definable in
HF. A set A Ď HF is computable iff both it and its complement
are Σ1-definable in HF. A function f (partial function f ) on HF is
computable iff it is Σ1-definable in HF.



Computability over a structure

Suppose M “ pM,R1, . . . ,Rnq is some first-order structure and
R1, . . . ,Rn are relations on it.
The set HFpMq is the set of all hereditary finite sets with
urelements from M

HFpMq “ M Y PăωpMq Y PăωpM Y PăωpMqq Y . . .

Here elements of M considered to be urelements, i.e. objects that
could not have elements.

Σ1-definability in pHFpMq,R1, . . . ,Rnq corresponds to
computations that could manipulate with finite collections of
objects from M and could use predicates R1, . . . ,Rn.



Constructible sets

§ L0 “ H

§ Lα`1 “ DefpLαq “ ta Ď Lα |
a is definable with parameters in pLα, Pqu

§ Lλ “
Ť

βăλ

Lβ, for limit ordinals λ

Note that HF “ Lω.



Computations in Lα?
We would like to equate computability relativized to Lα with
Σ1-definability.

However for most α’s we don’t get decent computability notion.

1. If α isn’t limit, then Cartesian product ˆ isn’t a total function.

2. If α isn’t of the form ωβ, then the ordinal addition isn’t total.

3. In Lω`1 there is a set a P Lω`1 and Σ1-definable f ,
dompf q Ě a such that tf pxq | x P au R Lω`1. Namely we have
Σ1-definable function TJ : n P ω ÞÝÑ Hpnq, where Hpnq Ď ω is
n-th Turing jump of H. However, the image
tTJpnq | n P ωu R Lω`1.

4. Analogue of 3. holds in any Lα, where α is computable, i.e.
α “ otpăq, for some computable well-ordering ă of N.

In fact the first decent setting for computability after Lω is
provided by LωCK

1
, where

ωCK
1 “ suptotpăq |ă is a computable well-ordering of Nu



Kripke-Platek set theory KP

KP is a first-order theory in the language of set theory

Axioms of KP

1. @z pz P x Ø z P yq Ñ x “ y (Extensionality)

2. Dzpx P z ^ y P zq (Pair)

3. Dyp@z P xqp@w P zqw P y (Union)

4. Dy@zpz P y Ø z P x ^ ϕpzqq, where ϕ is ∆0 and y R FV pϕq
(∆0-Separation)

5. p@y P xqDz ϕpx , y , zq Ñ Dz0p@y P xqpDz P z0qϕpx , y , zq, where
ϕ is Σ1 and z0 R FV pϕq (Σ1-collection)

6. Dx ϕpxq Ñ Dx pϕpxq ^ p@y P xq ϕpxqq (Foundation)



Set theories with urelements

Variables x , y , z ,w range over any objects.
Variables a, b, c, d range over sets.
Variables p, q, r range over urelements.

We have a predicate P and some relations R1, . . . ,Rn on
urelements. We presuppose that

1. any object is either set or urelment but not both;

2. urelements do not have elements

3. Ri px1, . . . , xki q should be false if at least one of xj isn’t an
urelement

∆0-formulas are formulas, where all quantifiers are bounded, e.g.
p@x P aq, pDp P xq.
Σ1-formulas of the form D~xD~aD~pϕ, where ϕ is ∆0.

Formally we could simulate this in a one-sorted first-order language
with a predicate Urpxq,



Theory KPU

Axioms of KPU

1. @z pz P aØ z P bq Ñ a “ b (Extensionality)

2. Dapx P a^ y P aq (Pair)

3. Dbp@c P aqp@x P cqx P b (Union)

4. Db@xpx P b Ø x P b ^ ϕpxqq, where ϕ is ∆0 and b R FV pϕq
(∆0-Separation)

5. p@x P aqDy ϕpa, x , yq Ñ Dbp@x P aqpDy P bqϕpa, x , yq, where
ϕ is Σ1 and b R FV pϕq (Σ1-collection)

6. Dx ϕpxq Ñ Dx pϕpxq ^ p@y P xq ϕpxqq (Foundation)



Cartesian product
Kuratowski pairing: xx , yy “ ttxu, tx , yuu.
Cartesian product: aˆ b “ txx , yy | x P a and y P bu

Theorem
Existence of Cartesian product is provable in KPU.

Proof.
We prove that aˆ b exists.
The following ∆0 formula expresses z “ xx , yy:

pDz1, z2 P zq
`

x P z1 ^ p@w P z1qpw “ xq^
x P z2 ^ y P z2 ^^p@w P z2qpw “ x _ w “ yq^
p@w P zqpw “ z1 _ w “ z2q

˘

By collection, for any x P a there exists c s.t.
p@y P bqpDz P cqz “ xx , yy. And thus by ∆0 separation for any x
there is c “ txx , yy | y P bu. The property c “ txx , yy | y P bu in
fact is ∆0, thus there exists d “ ttxx , yy | y P bu | x P au.
Applying union to d we get aˆ b.



Σ-formulas

The class of Σ-formulas consists of all formulas ϕ such that all
occurrences of unbounded D-quantifiers are positive and all
occurrences of unbounded @-quantifiers are negative.

Examples:
p@y P aq@xpDz P xqpz P yq Ñ p@y P aqDxpy P xq is a Σ-formula
@xpx “ xq and Dxpx P aq Ñ a “ b are not Σ-formulas.



Σ-formulas

Theorem
For any Σ-formula ϕp~vq there is a Σ1-formula ϕ1p~vq such that
theory KPU proves that

@~vpϕp~vq Ø ϕ1p~vqq.

Proof.
By pushing negations to the level of atomic formulas we transform
a Σ-formula into a formula, built from ^,_, bounded quantifiers,
D, atomic formulas and negated atomic formulas.
For ϕ of this kind we prove theorem by induction on the
construction. The only non-trivial case is the case of ϕ starting
with a bounded quantifier. For example consider ϕ of the form
p@x P aqψ. It is equivalent to p@x P aqD~uψ1, where ψ1 is ∆0. Thus
by Collection ϕ is equivalent to Dbp@x P aqpD~u P bqψ1.



Σ-reflection

For a formula ϕ the formula ϕa is the result of replacement of
unbounded quantifiers @x , Db,. . . with the bounded quantifiers
@x P a, Db P a, . . ..

Theorem
Instances of the following Σ-reflection scheme are provable in KPU:

ϕÑ Da ϕa, where ϕ P Σ, a R FV pϕq.

Proof.
Notice that for Σ-formulas ϕ and any a, b we have
a Ď b Ñ ϕa Ñ ϕb and ϕa Ñ ϕ.
Using this we prove instances of Σ-reflection by induction on
construction of Σ-formulas, where negations could be used only on
the level of atomic formulas.
The only non-trivial case is the case of bounded universal
quantifier that we handle using collection.



Alternative axiomatization of KPU

Alternative axioms for KPU

1. @z pz P aØ z P bq Ñ a “ b (Extensionality)

2. Db@xpx P b Ø x P b ^ ϕpxqq, where ϕ is ∆0 and b R FV pϕq
(∆0-Separation)

3. ϕÑ Da ϕa, where ϕ P Σ, a R FV pϕq. (Σ-reflection)

4. Dx ϕpxq Ñ Dx pϕpxq ^  p@y P xqϕpxqq (Foundation)



Recursion on sets and ordinals
As usual a set a is called transitive if p@b P aqb Ď a.
As usual ordinals are transitive sets consisting only of transitive
sets.

Spαq
def
“ αY tαu

Ordinal arithmetic

§ α` β “
Ť

pαY tSpα` γq | γ ă βuq

§ αβ “
Ť

tαγ ` α | γ ă βu

§ αβ “
Ť

ptSp0qu Y tαγα | γ ă βu

Theorem
The following is formalizable in KPU. Suppose f p~x , y , aq is a
Σ1-definable function. Then

gp~x , yq “ f p~x , y , txz , gp~x , zqy | z P yuq

is a Σ1-definable function.



Transitive models of KP

Recall that a set A is called transitive if p@b P Aqb Ď A.

We treat transitive sets A as models pA, Pq. Models of this form
are called transitive models.

HF is the least transitive model of KP.

Theory KPω is the extension of KP by the the axiom of infinity,
i.e. the assertion that ordinal ω exists. The least transitive model

of KPω is LωCK
1

.



Transitive models of KPU

Fix a model M “ pM,R1, . . . ,Rnq.
A transitive model over M given by a transitive set A, M Ď A is
pM,A; P,R1, . . . ,Rnq.

Transitive models of KP{KPU are called admissible sets.

HFpMq is the least admissivle set over M.

Let KPU` be KPU` Da@ppp P aq. The last axiom states that
there exists the set of all urelements. Transitive models of KPU`

over M are called admissible sets above M.

The least admissible set above M is denoted as HYPpMq.



Constructible models of KPU

§ L0pMq “M

§ Lα`1pMq “MY ta Ď Lα |
a is definable in the transitive model Lα`1pMqu

§ LλpMq “
Ť

βăλ

LβpMq, for limit ordinals λ.

For an admissible set A let opAq “ suptα | α P OnX Au.

Theorem
For any admissible set A above M the model LopAqpMq is an
admissible set above M and LopAqpMq Ď A.

Theorem
HYPpMq “ LαpMq for the least α such that LαpMq |ù KPU`.



Ill-founded models of KPU

Suppose A is a model of KPU` above M, where PA is not
necessarily the standard P.
Let WFpAq be the well-founded part of A i.e. the submodel of
WFpAq that contains all elements x such that there are no infinite
chain

x “ x0 Q
A x1 Q

A x2 Q
A . . .

Theorem
For any model A |ù KPU` above M, the model WFpAq |ù KPU`

and is isomorphic to an admissible A above M.

Corollary

For any A |ù KPU` above M we have HYPpMq Ďend A.



Π1
1 vs Σ1

Recall that Π1
1 in the signature R1, . . . ,Rn is the class of all

second-order formulas of the form

@P
pr1q

1 , . . . ,P
prmq
m ϕpP

pr1q

1 , . . . ,P
prmq
m q,

where ϕ is a first-order formula with additional predicates

P
pri q
i px1, . . . , xri q.

Theorem
For countable models M “ pM,R1, . . . ,Rnq a set H Ď Mk is
Π1

1-definable in M iff H is Σ1 in HYPpMq. The “if” part holds
even for uncountable M.

A set H Ď Mk is called ∆1
1-definable if both it and its complement

are Π1
1-definable

Corollary

For countable models M “ pM,R1, . . . ,Rnq a set H Ď Mk is
∆1

1-definable iff H P HYPpMq.



Recursively saturated models

A model M is called recursively saturated if for any computable set
of formulas Φ depending on variables ~x if for any finite subset
Φ1 Ď Φ we have M |ù D~x

Ź

ϕPΦ1

ϕp~xq, then there is ~p PM such that

M |ù ϕp~pq, for any ϕp~xq from Φ.

Theorem (Barwise, Schlipf)

For any M the following are equivalent:

1. M is recursively saturated,

2. opHYPpMqq “ ω.



KPω and subsystems of PA2

In KPω we naturally could interpret language of second-order
arithmetic. Natural numbers are interpreted by finite ordinals and
sets of natural by subsets of ω.
We have the following correspondences:

1. KPω $ ACA0

2. KPω $ Σ1
1-AC0

3. KPi “ KPω ` @xDypx P y ^ y |ù KPωq has the same
second-order consequences as ∆1

2-CA0 ` BI

4. KPω ` Σ1-Separation has the same second-order
consequences as Π1

2-CA0 ` BI



Thank you!


