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> 1-formulas in arithmetic

Consider the standard model of first-order arithmetic
(N, <,0,1,+, x), we will denote it simply as N.

First-order arithmetical formula ¢ is a Agp-formula if all quantifiers
in ¢ are bounded, i.e. all occurences of quantifiers are of the form

(Vx < E)(x) = Vx(x < t = (x)) or (3x < D(x) = Ix(x < tad(x)),

where x ¢ FV(v).

Examples:

Formulas x = x, 3y < x(y + y = x),

(Vy < x)(Vz<y)(yz=x—z=1) are Ao.

Formulas 3y(y + y = x), (¥x < x+ x)x = 0 aren't Ay.

The class 21 consists of all formulas of the form
Ix1, .oy X (X1, ..., Xn), Where p € Ag.



Computability and X;-definability
A set A < N¥ is defined by o(xi,...,xs) if for any ny,...,n e N
(ny,...,myeA < N op(n,...,ng).
A function f: NK — N is defined by ¢(x1, ..., xk,y) if for any
n,...,ng,meN
f(n,...,nx) =m < N op(n,...,ngm).

A partial function f: A — N, A < N¥ is defined by o(x1, ..., Xk, ¥)
if forany ny,...,ng,meN

(niy...,my € A& f(ny,...,nk) =m <= NEp(ny,...,ng, m).

Proposition

A set A < N¥ is computably enumerable iff it is ¥.1-definable in N.
A set A < N¥ s computable iff both it and its complement are

Y ;-definable in N. A function f (partial function ) on N is
computable iff it is ¥1-definable in N.



Computability in HIF
The set of all hereditary finite sets
HF = & uP() vPP(D)v... o P (D) u...

We identify HF with the structure (HF, €).

A set-theoretic formula ¢ is Ay if all quantifiers in ¢ are bounded,
i.e. all occurrences of quantifiers are of the form

(Vx € y)ib(x) = Vx(x € y = ¢(x)) or (Ix € y)(x) = Ix(x € yr)(x)),
where x and y are distinct variables.

Proposition

A set A < HF¥ is computably enumerable iff it is ¥1-definable in
HF. A set A< HF is computable iff both it and its complement
are Yq-definable in HIF. A function f (partial function f) on HF is
computable iff it is X1-definable in HF.



Computability over a structure

Suppose M = (M, Ry, ..., Ry) is some first-order structure and
Ri,..., Ry are relations on it.

The set HIF(9) is the set of all hereditary finite sets with
urelements from 9

HFON) = M o P~“(M) U P=*(MUP¥(M))u...

Here elements of M considered to be urelements, i.e. objects that
could not have elements.

Y ;-definability in (HF(9), Ry, ..., R,) corresponds to
computations that could manipulate with finite collections of
objects from 9Jt and could use predicates Ry, ..., R,.



Constructible sets

»lo=0O
> Loyt = Def(Ly) = {aC Ly |
a is definable with parameters in (L, €)}

» Ly = |J Lg, for limit ordinals A
B<A

Note that HF = L.



Computations in L,?
We would like to equate computability relativized to L, with
> 1-definability.
However for most a's we don't get decent computability notion.
1. If acisn’t limit, then Cartesian product x isn't a total function.
2. If o isn’t of the form w?, then the ordinal addition isn't total.
3. In L,y1 there is a set a€ L,,1 and X-definable f,
dom(f) 2 a such that {f(x) | x € a} ¢ Ly,+1. Namely we have
¥ ;-definable function TJ: n€ w —> @™ where &M c w is
n-th Turing jump of . However, the image
{TJ(n) | new} ¢ Lyt1.
4. Analogue of 3. holds in any L,, where « is computable, i.e.
a = ot(<), for some computable well-ordering < of N.

In fact the first decent setting for computability after L, is
provided by LMICK, where

w1CK = sup{ot(<) |< is a computable well-ordering of N}



Kripke-Platek set theory KP

KP is a first-order theory in the language of set theory
Axioms of KP

1. Vz (ze x < ze y) — x = y (Extensionality)
2. dz(x e z A y € z) (Pair)

3. dy(Vz € x)(Vw € z)w € y (Union)

4

. AyVz(zey < ze x A ¢(z)), where @ is Ag and y ¢ FV(y)
(Ao-Separation)

5. (Vy € x)3z o(x,y,z) — Jz0(Vy € x)(3z € z9)p(x, y, Z), where
pis X1 and zy ¢ FV(p) (X1-collection)

6. Ix p(x) = Ix (p(x) A (Yy € x)—p(x)) (Foundation)



Set theories with urelements

Variables x, y, z, w range over any objects.
Variables a, b, ¢, d range over sets.
Variables p, g, r range over urelements.

We have a predicate € and some relations Ry,..., R, on
urelements. We presuppose that

1. any object is either set or urelment but not both;
2. urelements do not have elements

3. Ri(x1,...,Xy) should be false if at least one of x; isn't an
urelement

Ag-formulas are formulas, where all quantifiers are bounded, e.g.
(Vx € a), (Ip € x).
¥ ;-formulas of the form 3x3a3pp, where ¢ is Ay.

Formally we could simulate this in a one-sorted first-order language
with a predicate Ur(x),



Theory KPU

Axioms of KPU

1.

Vz (z€ a<+ ze b) — a= b (Extensionality)

2. Ja(x € a Ay € a) (Pair)
3.
4. 3b¥x(x € b <> x € b A p(x)), where ¢ is Ag and b ¢ FV(p)

3b(Vc € a)(Vx € ¢)x € b (Union)

(Ap-Separation)

(Vx € a)dy ¢(a,x,y) — Ib(Vx € a)(3y € b)p(a, x,y), where
wis X1 and b¢ FV(p) (X1-collection)

Ix p(x) = 3Ix (p(x) A (Yy € x)—p(x)) (Foundation)



Cartesian product

Kuratowski pairing: (x,y) = {{x}, {x,y}}.
Cartesian product: a x b= {{x,y)|x€ aand ye b}

Theorem
Existence of Cartesian product is provable in KPU.

Proof.
We prove that a x b exists.
The following Ag formula expresses z = (x, y):

(3zi,z2€z)(x€z1 A (YW E z1) (W = X) A
xeznAnyenmnAAYwen)(w=xvw=y)A
(Vwez)(w=2z1vw=2))

By collection, for any x € a there exists c s.t.

(Vy € b)(3z € ¢)z = (x,y). And thus by Ay separation for any x
there is ¢ = {(x,y) | y € b}. The property ¢ = {{x,y) | y € b} in
fact is A, thus there exists d = {{{x,y) | y € b} | x € a}.
Applying union to d we get a x b. Ol



> -formulas

The class of X-formulas consists of all formulas ¢ such that all
occurrences of unbounded 3-quantifiers are positive and all
occurrences of unbounded V-quantifiers are negative.

Examples:
(Vy € a)Vx(Ize x)(ze y) — (Vy € a)Ix(y € x) is a X-formula
Vx(x = x) and 3x(x € a) — a = b are not X-formulas.



> -formulas

Theorem
For any Y.-formula ©(V) there is a X1-formula ©'(V) such that
theory KPU proves that

Vi (p(V) < (V).

Proof.

By pushing negations to the level of atomic formulas we transform
a 2-formula into a formula, built from A, v, bounded quantifiers,
3, atomic formulas and negated atomic formulas.

For ¢ of this kind we prove theorem by induction on the
construction. The only non-trivial case is the case of ¢ starting
with a bounded quantifier. For example consider ¢ of the form
(Vx € a)i. It is equivalent to (Vx € a)3dy)’, where ¢' is Ag. Thus
by Collection ¢ is equivalent to 3b(Vx € a)(3d € b)y'. O



> -reflection

For a formula ¢ the formula ¢? is the result of replacement of
unbounded quantifiers Vx, 3b,... with the bounded quantifiers
Vxea, dbea, ....

Theorem
Instances of the following ¥ -reflection scheme are provable in KPU:

© — Ja?, where pe X, a¢ FV(p).

Proof.

Notice that for >-formulas ¢ and any a, b we have
achb— p? - pPand p? - .

Using this we prove instances of X-reflection by induction on
construction of ¥-formulas, where negations could be used only on
the level of atomic formulas.

The only non-trivial case is the case of bounded universal
quantifier that we handle using collection. Ol



Alternative axiomatization of KPU

Alternative axioms for KPU
1. Vz (z€ a < ze b) — a= b (Extensionality)

2. 3bVx(x € b x€ b A ¢(x)), where v is Ag and b ¢ FV(y)
(Ap-Separation)

3. ¢ > Jay? where pe X, a¢ FV(yp). (X-reflection)
4. Ix p(x) = Ix (¢(x) A —=(Vy € x)¢(x)) (Foundation)



Recursion on sets and ordinals

As usual a set a is called transitive if (Vb e a)b C a.
As usual ordinals are transitive sets consisting only of transitive
sets.

S(e) ® auf{a)
Ordinal arithmetic
»a+B=Uleu{Sla+y)[y<8}
»af=Ulay +aly < B}
> of = J{S(0)} v {a7a | v < B}

Theorem
The following is formalizable in KPU. Suppose f(X,y,a) is a
> 1-definable function. Then

g()?,)/) = f()?a)/a {<Z7g()?vz)> | zey})

is a X1-definable function.



Transitive models of KP

Recall that a set A is called transitive if (Vbe A)b < A.

We treat transitive sets A as models (A, ). Models of this form
are called transitive models.

HTF is the least transitive model of KP.

Theory KPw is the extension of KP by the the axiom of infinity,
i.e. the assertion that ordinal w exists. The least transitive model

of KPw is Lwch.



Transitive models of KPU

Fix a model M = (M, Ry, ..., Rn).

A transitive model over 91 given by a transitive set A, M C Ais
(M;A;e,Ry1,...,Ry).

Transitive models of KP/KPU are called admissible sets.

HIF(90) is the least admissivle set over .

Let KPU™ be KPU + JaVp(p € a). The last axiom states that
there exists the set of all urelements. Transitive models of KPU™
over 9 are called admissible sets above 1.

The least admissible set above 91 is denoted as HYP ().



Constructible models of KPU

> Lo(9m) =M
» Loy =Mu{ac L, |
a is definable in the transitive model L, 1(90)}

> Ly(OM) = |J Lg(M), for limit ordinals \.
B<A

For an admissible set A let o(A) = sup{a | a € On n A}.

Theorem
For any admissible set A above M the model L, a4)(IM) is an
admissible set above 9 and L, a4)(M) < A.

Theorem
HYP(OM) = L (9M) for the least o such that L,(9M) = KPU*.



[[I-founded models of KPU

Suppose 2 is a model of KPU™T above M, where €% is not
necessarily the standard €.
Let WF(2() be the well-founded part of 2 i.e. the submodel of
WF(2() that contains all elements x such that there are no infinite
chain

X=X09mX1 BmXQ Bm...
Theorem
For any model 2 |= KPU™ above 9, the model WF(21) = KPU™T
and is isomorphic to an admissible A above 9.

Corollary
For any 2 = KPU™ above M we have HYP(IMN) Seng 2.



I'I% VS Zl

Recall that M} in the signature Ry, ..., R, is the class of all
second-order formulas of the form

VP L PSPPI L PR,

where ¢ is a first-order formula with additional predicates
P,-(r’)(xl, ey Xr,)-

Theorem

For countable models M = (M, Ry,...,R,) a set H< M¥ is
I_I%-definable in M iff H is ¥1 in HYP(O). The “if” part holds
even for uncountable 9.

A set H € M is called Aj-definable if both it and its complement
are Ml-definable
Corollary

For countable models 9 = (M, Ry,...,R,) a set H < Mk is
Al-definable iff H € HIYP(9)).



Recursively saturated models

A model 9 is called recursively saturated if for any computable set
of formulas ® depending on variables x if for any finite subset
®’ < & we have M = 3IX A ¢(X), then there is p'e 9 such that
ped’
M = p(p), for any p(X) from ®.
Theorem (Barwise, Schlipf)
For any 9t the following are equivalent:
1. 9 is recursively saturated,

2. o(HYP(MM)) = w.



KPw and subsystems of PA;

In KPw we naturally could interpret language of second-order
arithmetic. Natural numbers are interpreted by finite ordinals and
sets of natural by subsets of w.
We have the following correspondences:
1. KPw - ACAg
2. KPw I £}-AC
3. KPi = KPw + ¥x3y(x € y A y = KPw) has the same
second-order consequences as A%—CAO + Bl
4. KPw + ¥1-Separation has the same second-order
consequences as M3-CAq + BI



Thank you!



