Reflection algebras and progressions

Lev D. Beklemishev

Steklov Mathematical Institute of the Russian Academy of Sciences

January 20, 2021

Lev D. Beklemishev Reflection algebras and progressions

Peano arithmetic PA: formalizes 'finitary mathematics'; based on axioms for natural numbers with + and \cdot .

Second order arithmetic PA²: formalizes analysis; extends PA by variables for sets of numbers and assumes the schemata of full comprehension and induction.

Zermelo–Fraenkel set theory ZFC: formalizes *all* conventional mathematics; based on axioms for sets and membership relation.

Formal axiomatic theories are materialized in various *automatic* and *interactive theorem provers* such as Coq, Isabelle/HOL or Mizar.

Theories differ in

- the expressivity of their languages (richness);
- the amount of axioms (strength),
- speed of proofs,
- deductive mechanism, etc.

We need to develop a systematic way to compare and measure strength of theories.

Hamano, Okada (1997), Beklemishev (2002)

Consider words in the alphabet \mathbb{N} . A word α is higher than *n* if each letter of α exceeds *n*.

Given α , generate the following sequence $(\alpha_n)_{n \in \omega}$ of words.

Set $\alpha_0 := \alpha$ and define α_{k+1} by the following two rules:

- If $\alpha_k = 0\beta$ then $\alpha_{k+1} := \beta$.
- If $\alpha_k = (n+1)\beta$, find the longest (possibly empty) prefix β_0 of β such that β_0 is higher than n. Assume $\beta = \beta_0 \gamma$. Then let $\alpha_{k+1} := (n\beta_0)^{k+2}\gamma$.

Hamano, Okada (1997), Beklemishev (2002)

Consider words in the alphabet \mathbb{N} . A word α is higher than *n* if each letter of α exceeds *n*.

Given α , generate the following sequence $(\alpha_n)_{n \in \omega}$ of words.

Set $\alpha_0 := \alpha$ and define α_{k+1} by the following two rules:

- If $\alpha_k = 0\beta$ then $\alpha_{k+1} := \beta$.
- If $\alpha_k = (n+1)\beta$, find the longest (possibly empty) prefix β_0 of β such that β_0 is higher than n. Assume $\beta = \beta_0 \gamma$. Then let $\alpha_{k+1} := (n\beta_0)^{k+2}\gamma$.

Hamano, Okada (1997), Beklemishev (2002)

Consider words in the alphabet \mathbb{N} . A word α is higher than *n* if each letter of α exceeds *n*.

Given α , generate the following sequence $(\alpha_n)_{n \in \omega}$ of words.

Set $\alpha_0 := \alpha$ and define α_{k+1} by the following two rules:

- If $\alpha_k = 0\beta$ then $\alpha_{k+1} := \beta$.
- If $\alpha_k = (n+1)\beta$, find the longest (possibly empty) prefix β_0 of β such that β_0 is higher than *n*. Assume $\beta = \beta_0 \gamma$. Then let $\alpha_{k+1} := (n\beta_0)^{k+2}\gamma$.

< 同 > < 三 > < 三 >

$\alpha_0 = 13022$ $\alpha_1 = 0303022$ $\alpha_2 = 303022$ $\alpha_3 = 222203022$ $\alpha_4 = 122212221222122203022$ $\alpha_5 = (02221222122212221222)^6 03022$

 $\alpha_0 = 13022$ $\alpha_1 = 0303022$ $\alpha_2 = 303022$ $\alpha_3 = 222203022$ $\alpha_4 = 122212221222122203022$ $\alpha_5 = (02221222122212221222)^6 03022$

(ロ) (部) (E) (E) E

 $\begin{aligned} \alpha_0 &= 13022 \\ \alpha_1 &= 0303022 \\ \alpha_2 &= 303022 \\ \alpha_3 &= 222203022 \\ \alpha_4 &= 122212221222122203022 \\ \alpha_5 &= (02221222122212221222)^6 03022 \end{aligned}$

 $\begin{aligned} \alpha_0 &= 13022 \\ \alpha_1 &= 0303022 \\ \alpha_2 &= 303022 \\ \alpha_3 &= 222203022 \\ \alpha_4 &= 122212221222122203022 \\ \alpha_5 &= (0222122212221222)^6 03022 \end{aligned}$

 $\alpha_{0} = 13022$ $\alpha_{1} = 0303022$ $\alpha_{2} = 303022$ $\alpha_{3} = 222203022$ $\alpha_{4} = 122212221222122203022$ $\alpha_{5} = (0222122212221222)^{6}03022$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト …

÷.

 $\begin{aligned} \alpha_0 &= 13022 \\ \alpha_1 &= 0303022 \\ \alpha_2 &= 303022 \\ \alpha_3 &= 222203022 \\ \alpha_4 &= 122212221222122203022 \\ \alpha_5 &= (02221222122212221222)^6 03022 \\ \cdots \end{aligned}$

э

The *Worm principle* (WP) states that, for each α , the sequence α_k terminates in an empty word.

Theorem.

- WP is true but unprovable in Peano arithmetic;
- WP is equivalent in EA to the Σ_1 -reflection $R_1(PA)$ for PA;
- The function F(α) := μn.(α_n is empty) exceeds any computable function provably total in PA.

The *Worm principle* (WP) states that, for each α , the sequence α_k terminates in an empty word.

Theorem.

- WP is true but unprovable in Peano arithmetic;
- WP is equivalent in EA to the Σ_1 -reflection $R_1(PA)$ for PA;
- The function F(α) := μn.(α_n is empty) exceeds any computable function provably total in PA.

The *Worm principle* (WP) states that, for each α , the sequence α_k terminates in an empty word.

Theorem.

- WP is true but unprovable in Peano arithmetic;
- WP is equivalent in EA to the Σ_1 -reflection $R_1(PA)$ for PA;
- The function F(α) := μn.(α_n is empty) exceeds any computable function provably total in PA.

Elementary arithmetic EA is formulated in the language $(0, 1, +, \cdot, 2^x, \leq, =)$ and has some minimal set of basic axioms defining these symbols plus the induction schema for bounded formulas.¹

A formula is *bounded* if all its quantifier occurrences are of the form $\forall x \leq t$ or $\exists x \leq t$ where t is a term (not containing x).

Peano arithmetic PA is EA with full induction:

 $\varphi(0) \land \forall x (\varphi(x) \rightarrow \varphi(x+1)) \rightarrow \forall x \varphi(x),$

where φ is any formula (possibly with parameters).

¹EA is also known as /∆₀ + exp and EFA. Lev D. Beklemishev Reflection algebras and progressions

 Σ_n -formulas: $\exists x_1 \forall x_2 \dots Q x_n \varphi(x_1, \dots, x_n)$, with $\varphi(\vec{x})$ bounded. \prod_n -formulas: $\forall x_1 \exists x_2 \dots Q x_n \varphi(x_1, \dots, x_n)$

Fact. A set is Σ_1 -definable in \mathbb{N} iff it is recursively (computably) enumerable.

 $I\Sigma_n = EA + induction for \Sigma_n$ -formulas

 $\mathsf{E}\mathsf{A}\subset I\Sigma_1\subset I\Sigma_2\cdots\subset\mathsf{P}\mathsf{A}$

• • • • • • • •

 Σ_n -formulas: $\exists x_1 \forall x_2 \dots Q x_n \varphi(x_1, \dots, x_n)$, with $\varphi(\vec{x})$ bounded. \prod_n -formulas: $\forall x_1 \exists x_2 \dots Q x_n \varphi(x_1, \dots, x_n)$

Fact. A set is Σ_1 -definable in \mathbb{N} iff it is recursively (computably) enumerable.

 $I\Sigma_n = EA + \text{ induction for } \Sigma_n \text{-formulas}$

 $\mathsf{E}\mathsf{A}\subset \mathsf{I}\Sigma_1\subset \mathsf{I}\Sigma_2\cdots\subset\mathsf{P}\mathsf{A}$

A B > A B >

Definition

- A theory T is Gödelian if
 - Natural numbers and operations + and \cdot are definable in T;
 - T proves basic properties of these operations (contains EA);
 - There is an algorithm (and a Σ_1 -formula) recognizing the axioms of T.

 $\Box_T(x) = x$ is the Gödel number of a *T*-provable formula' Con(*T*) = *T* is consistent'

K. Gödel (1931): If a Gödelian theory T is consistent, then Con(T) is true but unprovable in T.

A natural response to Gödel: add Con(T) to T as a new axiom. Is T + Con(T) complete? No, because it is Gödelian.

A. Turing (1939) suggested to continue the process:

$$T_0 = T$$

$$T_1 = T + Con(T)$$

$$T_2 = T + Con(T) + Con(T + Con(T))$$

...

$$T_{n+1} = T_n + Con(T_n)$$

...

Is $\bigcup_{n\geq 0} T_n$ complete?

• • = • • = •

No: $T_{\omega} := \bigcup_{n \ge 0} T_n$ is Gödelian. Hence, T_{ω} does not prove $Con(T_{\omega})$ and the process continues:

Turing hoped to obtain a classification of all true arithmetical statements according to the stages of this (and similar) processes – but encountered difficulties.

A.M. Turing 1939 System of logics based on ordinals:

We might also expect to obtain an interesting classification of number-theoretic theorems according to "depth". A theorem which required an ordinal α to prove it would be deeper than one which could be proved by the use of an ordinal β less than α . However, this presupposes more than is justified. The difficulties are:

- Logical complexity restriction;
- The problem of canonicity of ordinal notations.

• • = • • = •

Orderings can be represented in T, for example, by assigning rational numbers to points. The resulting set of numbers must be recognizable by an algorithm. (Otherwise, the axioms of T_{α} would not be recognizable.)

A problem: theories T_{α} depend on a particular way the ordering is computed rather than on the isomorphism type (the ordinal) of α .

Turing, Feferman, Kreisel: the whole classification idea breaks down because of this problem.

Turing's theorem

Theorem

For each true Π_1 -sentence π there is a ordinal notation α such that $|\alpha| = \omega + 1$ and T_{α} proves π .

A. Turing:

This completeness theorem as usual is of no value. Although it shows, for instance, that it is possible to prove Fermat's last theorem with Λ_P (if it is true) yet the truth of the theorem would really be assumed by taking a certain formula as an ordinal formula².

A partial way out: Careful selection of 'canonical' or 'natural' ordinal notations. This is possible for very large constructive ordinals, but we lack a general understanding of what is a natural ordinal notation system.

²These are his notations for recursive well-orderings.□ > <∂ > <≧ > <≧ > <≧ > > ≥ < <<

Turing's theorem

Theorem

For each true Π_1 -sentence π there is a ordinal notation α such that $|\alpha| = \omega + 1$ and T_{α} proves π .

A. Turing:

This completeness theorem as usual is of no value. Although it shows, for instance, that it is possible to prove Fermat's last theorem with Λ_P (if it is true) yet the truth of the theorem would really be assumed by taking a certain formula as an ordinal formula².

A partial way out: Careful selection of 'canonical' or 'natural' ordinal notations. This is possible for very large constructive ordinals, but we lack a general understanding of what is a natural <u>ordinal notation system.</u>

Turing's theorem

Theorem

For each true Π_1 -sentence π there is a ordinal notation α such that $|\alpha| = \omega + 1$ and T_{α} proves π .

A. Turing:

This completeness theorem as usual is of no value. Although it shows, for instance, that it is possible to prove Fermat's last theorem with Λ_P (if it is true) yet the truth of the theorem would really be assumed by taking a certain formula as an ordinal formula².

A partial way out: Careful selection of 'canonical' or 'natural' ordinal notations. This is possible for very large constructive ordinals, but we lack a general understanding of what is a natural ordinal notation system.

²These are his notations for recursive well-orderings... + () + () + () + () + ()

Fact: There are true statements that cannot be proved at any stage of a Turing progression. Let

 $T' = T + {Con(S) : S any consistent Gödelian theory}.$

T' obviously contains any T_{α} .

Is T' Gödelian? No: there is no algorithm to recognize the consistency of an arbitrary given system *S*.

Nonetheless, Gödel theorem holds for T': Con(T') is expressible but not provable in T'. Since $T_{\alpha} \subseteq T'$, T_{α} does not prove Con(T').

・ 回 ト ・ ヨ ト ・ ヨ ト

Fact: There are true statements that cannot be proved at any stage of a Turing progression. Let

 $T' = T + {Con(S) : S any consistent Gödelian theory}.$

T' obviously contains any T_{α} .

Is T' Gödelian? No: there is no algorithm to recognize the consistency of an arbitrary given system *S*.

Nonetheless, Gödel theorem holds for T': Con(T') is expressible but not provable in T'. Since $T_{\alpha} \subseteq T'$, T_{α} does not prove Con(T').

.

Let T be a Gödelian theory.

• Reflection principles $R_n(T)$ for T are arithmetical sentences expressing "every Σ_n -sentence provable in T is true".

 $R_n(T)$ can be seen as a relativization of the consistency assertion:

 $R_0(T) \leftrightarrow \operatorname{Con}(T)$ $R_n(T) \leftrightarrow \operatorname{Con}(T + \operatorname{all true} \Pi_n \operatorname{-sentences})$

 $R_n(T)$ is expressible as a Π_{n+1} -sentence.

Def. $\mathfrak{G}_{\mathsf{EA}}$ is the set of all Gödelian extensions of EA mod $=_{\mathsf{EA}}$. $S \leq_{\mathsf{EA}} T \iff \mathsf{EA} \vdash \forall x (\Box_T(x) \to \Box_S(x));$

 $S =_{\mathsf{EA}} T \iff (S \leq_{\mathsf{EA}} T \text{ and } T \leq_{\mathsf{EA}} S).$

Then $(\mathfrak{G}_{\mathsf{EA}}, \wedge_{\mathsf{EA}})$ is a lower semilattice with $S \wedge_{\mathsf{EA}} T := S \cup T$ (defined by the disjunction of the formulas defining sets of axioms of S and T) Each of R_n correctly defines a monotone operator $R : \mathfrak{G}_S \to \mathfrak{G}_S$ on the semilattice of Gödelian extensions of S.

An operator R is:

- *monotone* if $x \le y$ implies $R(x) \le R(y)$;
- semi-idempotent if $R(R(x)) \leq R(x)$;
- *closure* if R is m., s.i. and $x \le R(x)$.

All R_n are monotone and semi-idempotent, but not closure.

Def. $R : \mathfrak{G}_T \to \mathfrak{G}_T$ is *computable* if it can be defined by a computable map on the Gödel numbers of formulas defining the extensions of T.

Suppose (Ω, \prec) is an elementary recursive well-ordering and R is a computable m.s.i. operator on $\mathfrak{G}_{\mathcal{T}}$.

Theorem There exist theories $R^{\alpha}(S)$ (where $\alpha \in \Omega$): $R^{0}(S) =_{T} S$ and, if $\alpha \succ 0$, $R^{\alpha}(S) =_{T} \bigcup \{R(R^{\beta}(S)) : \beta \prec \alpha\}.$

Each R^{α} is computable and m.s.i.. Under some natural additional conditions the family R^{α} is unique modulo provable equivalence.

▲ 同 ▶ ▲ 国 ▶ ▲ 国

Def. $R : \mathfrak{G}_T \to \mathfrak{G}_T$ is *computable* if it can be defined by a computable map on the Gödel numbers of formulas defining the extensions of T.

Suppose (Ω, \prec) is an elementary recursive well-ordering and R is a computable m.s.i. operator on $\mathfrak{G}_{\mathcal{T}}$.

Theorem

There exist theories $R^{\alpha}(S)$ (where $\alpha \in \Omega$): $R^{0}(S) =_{T} S$ and, if $\alpha \succ 0$,

 $R^{\alpha}(S) =_{T} \bigcup \{R(R^{\beta}(S)) : \beta \prec \alpha\}.$

Each R^{α} is computable and m.s.i.. Under some natural additional conditions the family R^{α} is unique modulo provable equivalence.

| 4 同 ト 4 三 ト 4 三 ト

Let S be a Gödelian extension of EA and $(\Omega, <)$ a (natural) elementary recursive well-ordering.

- Π⁰_{n+1}-ordinal of S, denoted ord_n(S), is the sup of all α ∈ Ω such that S ⊢ R^α_n(EA);
- Conservativity spectrum of S is the sequence $(\alpha_0, \alpha_1, \alpha_2, ...)$ such that $\alpha_i = ord_i(S)$.

Examples of spectra: $I\Sigma_1$: $(\omega^{\omega}, \omega, 1, 0, 0, ...)$ PA : $(\varepsilon_0, \varepsilon_0, \varepsilon_0, ...)$ PA + WP : $(\varepsilon_0^2, \varepsilon_0 \cdot 2, \varepsilon_0, \varepsilon_0, ...)$ Let S be a Gödelian extension of EA and $(\Omega, <)$ a (natural) elementary recursive well-ordering.

- Π_{n+1}^0 -ordinal of S, denoted $ord_n(S)$, is the sup of all $\alpha \in \Omega$ such that $S \vdash R_n^{\alpha}(EA)$;
- Conservativity spectrum of S is the sequence $(\alpha_0, \alpha_1, \alpha_2, ...)$ such that $\alpha_i = ord_i(S)$.

Examples of spectra:

$$\begin{split} & I\Sigma_1: \ (\omega^{\omega}, \omega, 1, 0, 0, \dots) \\ & \mathsf{PA}: \ (\varepsilon_0, \varepsilon_0, \varepsilon_0, \dots) \\ & \mathsf{PA} + WP: \ (\varepsilon_0^2, \varepsilon_0 \cdot 2, \varepsilon_0, \varepsilon_0, \dots) \end{split}$$

Reflection algebra of T is the structure

 $(\mathfrak{G}_{T},\wedge_{T},1_{T},\{R_{n}:n\in\omega\}).$

Here, 1_T is the top element (the equivalence class of T).

We are interested in

- The identities of this structure;
- Its subalgebra generated by 1_{T} .

Language: $\alpha ::= \top | p | (\alpha \land \alpha) | n\alpha$ $n \in \omega$ Example: $\alpha = 3(2p \land 32\top)$, or shortly: $3(2p \land 32)$. Sequents: $\alpha \vdash \beta$.

RC rules:

- $n\alpha \vdash m\alpha$ for n > m;

```
Ex. 3 \land 23 \vdash 3(\top \land 23) \vdash 323.
```

Language: $\alpha ::= \top |p| (\alpha \land \alpha) | n\alpha \qquad n \in \omega$ Example: $\alpha = 3(2p \land 32\top)$, or shortly: $3(2p \land 32)$. Sequents: $\alpha \vdash \beta$.

RC rules:

- **(a)** $nn\alpha \vdash n\alpha$; if $\alpha \vdash \beta$ then $n\alpha \vdash n\beta$;
- **(**) $n\alpha \wedge m\beta \vdash n(\alpha \wedge m\beta)$ for n > m.

Ex. $3 \land 23 \vdash 3(\top \land 23) \vdash 323$.

Theorems (E. Dashkov, 2012).

- $\alpha \vdash_{RC} \beta$ iff $\alpha \leq_T \beta$ holds in $(\mathfrak{G}_T; \wedge_T, 1_T, \{R_n : n \in \omega\});$
- *RC* is polytime decidable;
- **O** *RC* enjoys the finite model property.

Rem. The first claim is based on Japaridze's (1986) arithmetical completeness theorem for provability logic GLP.

Theorems (E. Dashkov, 2012).

- $\alpha \vdash_{RC} \beta$ iff $\alpha \leq_T \beta$ holds in $(\mathfrak{G}_T; \wedge_T, 1_T, \{R_n : n \in \omega\});$
- *RC* is polytime decidable;
- **O** *RC* enjoys the finite model property.

Rem. The first claim is based on Japaridze's (1986) arithmetical completeness theorem for provability logic GLP.

Let RC^0 denote the variable-free fragment of RC. Let W denote the set of all RC^0 -formulas. For $\alpha, \beta \in W$ define:

- $\alpha \sim \beta$ if $\alpha \vdash \beta$ and $\beta \vdash \alpha$ in RC⁰;
- $\alpha <_n \beta$ if $\beta \vdash n\alpha$.

Theorem.

- **1** Every $\alpha \in W$ is equivalent to a *word* (formula without \wedge);
- 2 $(W/\sim, <_0)$ is isomorphic to $(\varepsilon_0, <)$.

 $\varepsilon_0 = \sup\{\omega, \omega^{\omega}, \omega^{\omega^{\omega}}, \dots\}$

Let $U \equiv_n V$ mean U and V prove the same \prod_{n+1} -sentences.

Suppose $S \subseteq \prod_{n+2}$ and $U \vdash S$.

Theorem. $R_{n+1}(U) \equiv_n R_n^{\omega}(U)$ in \mathfrak{G}_S .

Example. In $\mathfrak{G}_{\mathsf{EA}}$: $I\Sigma_1 \equiv R_2(\mathsf{EA}) \equiv_1 R_1^\omega(\mathsf{EA}) \equiv \mathsf{PRA} \ (\mathsf{Parsons-Mints}).$

(This can be written as: $2 \equiv_1 \{1^k : k < \omega\}$ in $\mathfrak{G}_{\mathsf{EA}}$.)

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ …

Let $U \equiv_n V$ mean U and V prove the same \prod_{n+1} -sentences.

Suppose $S \subseteq \prod_{n+2}$ and $U \vdash S$.

Theorem. $R_{n+1}(U) \equiv_n R_n^{\omega}(U)$ in \mathfrak{G}_S .

Example. In C_{EA}:

 $I\Sigma_1 \equiv R_2(EA) \equiv_1 R_1^{\omega}(EA) \equiv PRA$ (Parsons–Mints).

(This can be written as: $2 \equiv_1 \{1^k : k < \omega\}$ in \mathfrak{G}_{EA} .)

(4月) (日) (日) 日

Suppose $\alpha = (n+1)\beta \in W$, let α_S denote the value of α in \mathfrak{G}_S .

- $\alpha_S = R_{n+1}(U)$ where $U = S + \beta_S$.
- By the reduction property $R_{n+1}(U) \equiv_0 \{R_n^k(U) : k < \omega\}$.
- Iterations $R_n^k(U)$ correspond to the RC-formulas: $n\beta$, $n(\beta \land n\beta)$, $n(\beta \land n(\beta \land n\beta))$...
- Each of these formulas is RC-equivalent to a word.
- These words correspond to the main rule of the Worm sequence.

Iterated reflection and analysis of PA

- W_n is the set of words in the alphabet $\{k \in \omega : k \ge n\}$.
- We consider $(W_n, <_n)$ as an ordinal notation system and build the corresponding progression iterating R_n .
- Let S be a Π_{n+1} extension of EA.
 Each α ∈ W corresponds to an element α_S ∈ 𝔅_S.

Theorem. For all $\alpha \in W_n$, theories α_S and $R_n^{\alpha}(S)$ over S are equivalent for \prod_{n+1} -sentences.

Corollary. For each *n*, $PA \equiv_n R_n^{\varepsilon_0}(EA)$ (U. Schmerl)

- For n = 0: Consistency proof for PA (Gentzen);
- For n = 1: Characterizing provably recursive functions of PA (Ackermann–Schwichtenberg–Wainer).

(日) (同) (三) (三) (二)

- Lev D. Beklemishev, Reflection calculus and conservativity spectra, *Russian Math. Surveys*, 73:4 (2018), 569–613.
- Lev D. Beklemishev, Fedor N. Pakhomov, *Reflection algebras and conservation results for theories of iterated truth*, 2019, 48 pp., arXiv: 1908.10302.