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Standard axiomatic theories

Peano arithmetic PA: formalizes ‘finitary mathematics’; based on
axioms for natural numbers with + and ·.

Second order arithmetic PA2: formalizes analysis; extends PA by
variables for sets of numbers and assumes the schemata of full
comprehension and induction.

Zermelo–Fraenkel set theory ZFC: formalizes all conventional
mathematics; based on axioms for sets and membership relation.

Formal axiomatic theories are materialized in various automatic and
interactive theorem provers such as Coq, Isabelle/HOL or Mizar.
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Comparing axiomatic theories

Theories differ in

the expressivity of their languages (richness);

the amount of axioms (strength),

speed of proofs,

deductive mechanism, etc.

We need to develop a systematic way to compare and measure
strength of theories.
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The Worm principle

Hamano, Okada (1997), Beklemishev (2002)

Consider words in the alphabet N.
A word α is higher than n if each letter of α exceeds n.

Given α, generate the following sequence (αn)n∈ω of words.

Set α0 := α and define αk+1 by the following two rules:

If αk = 0β then αk+1 := β.

If αk = (n + 1)β, find the longest (possibly empty) prefix β0

of β such that β0 is higher than n. Assume β = β0γ. Then
let αk+1 := (nβ0)k+2γ.
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Example

α0 = 13022

α1 = 0303022

α2 = 303022

α3 = 222203022

α4 = 1222122212221222122203022

α5 = (02221222122212221222)603022

. . .
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Independence results

The Worm principle (WP) states that, for each α, the sequence αk

terminates in an empty word.

Theorem.

WP is true but unprovable in Peano arithmetic;

WP is equivalent in EA to the Σ1-reflection R1(PA) for PA;

The function F (α) := µn.(αn is empty) exceeds any
computable function provably total in PA.
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Background formal arithmetic

Elementary arithmetic EA is formulated in the language
(0, 1,+, ·, 2x ,≤,=) and has some minimal set of basic axioms
defining these symbols plus the induction schema for bounded
formulas.1

A formula is bounded if all its quantifier occurrences are of the
form ∀x ≤ t or ∃x ≤ t where t is a term (not containing x).

Peano arithmetic PA is EA with full induction:

ϕ(0) ∧ ∀x (ϕ(x)→ ϕ(x + 1))→ ∀xϕ(x),

where ϕ is any formula (possibly with parameters).

1EA is also known as I∆0 + exp and EFA.
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Quantifier complexity

Σn-formulas: ∃x1∀x2 . . .Qxnϕ(x1, . . . , xn), with ϕ(~x) bounded.
Πn-formulas: ∀x1 ∃x2 . . .Qxnϕ(x1, . . . , xn)

Fact. A set is Σ1-definable in N iff it is recursively (computably)
enumerable.

IΣn = EA + induction for Σn-formulas

EA ⊂ IΣ1 ⊂ IΣ2 · · · ⊂ PA
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Gödel’s 2nd Incompleteness Theorem

Definition

A theory T is Gödelian if

Natural numbers and operations + and · are definable in T ;

T proves basic properties of these operations (contains EA);

There is an algorithm (and a Σ1-formula) recognizing the
axioms of T .

2T (x) = ‘x is the Gödel number of a T -provable formula’
Con(T ) = ‘T is consistent’

K. Gödel (1931): If a Gödelian theory T is consistent, then
Con(T ) is true but unprovable in T .
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Turing vs. Gödel

A natural response to Gödel: add Con(T ) to T as a new axiom.
Is T + Con(T ) complete? No, because it is Gödelian.

A. Turing (1939) suggested to continue the process:

T0 = T
T1 = T + Con(T )
T2 = T + Con(T ) + Con(T + Con(T ))
...
Tn+1 = Tn + Con(Tn)
...

Is ∪n≥0Tn complete?
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No: Tω := ∪n≥0Tn is Gödelian. Hence, Tω does not prove
Con(Tω) and the process continues:

Tω+1 = Tω + Con(Tω)
Tω+2 = Tω+1 + Con(Tω+1)
...

T0 T1 T2 Tω Tω+1 Tω·2 Tω2
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Turing’s classification program

Turing hoped to obtain a classification of all true arithmetical
statements according to the stages of this (and similar) processes –
but encountered difficulties.

A.M. Turing 1939 System of logics based on ordinals:

We might also expect to obtain an interesting classification
of number-theoretic theorems according to “depth”. A
theorem which required an ordinal α to prove it would be
deeper than one which could be proved by the use of an
ordinal β less than α. However, this presupposes more
than is justified.
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Turing progressions

The difficulties are:

Logical complexity restriction;

The problem of canonicity of ordinal notations.
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Ordinal notations

Orderings can be represented in T , for example, by assigning
rational numbers to points. The resulting set of numbers must be
recognizable by an algorithm. (Otherwise, the axioms of Tα would
not be recognizable.)

A problem: theories Tα depend on a particular way the ordering is
computed rather than on the isomorphism type (the ordinal) of α.

Turing, Feferman, Kreisel: the whole classification idea breaks
down because of this problem.
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Turing’s theorem

Theorem

For each true Π1-sentence π there is a ordinal notation α such that
|α| = ω + 1 and Tα proves π.

A. Turing:
This completeness theorem as usual is of no value. Al-
though it shows, for instance, that it is possible to prove
Fermat’s last theorem with ΛP (if it is true) yet the truth
of the theorem would really be assumed by taking a certain
formula as an ordinal formula2.

A partial way out: Careful selection of ‘canonical’ or ‘natural’
ordinal notations. This is possible for very large constructive
ordinals, but we lack a general understanding of what is a natural
ordinal notation system.

2These are his notations for recursive well-orderings.
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Logical complexity restriction

Fact: There are true statements that cannot be proved at any
stage of a Turing progression. Let

T ′ = T + {Con(S) : S any consistent Gödelian theory}.

T ′ obviously contains any Tα.

Is T ′ Gödelian? No: there is no algorithm to recognize the
consistency of an arbitrary given system S .

Nonetheless, Gödel theorem holds for T ′: Con(T ′) is expressible
but not provable in T ′. Since Tα ⊆ T ′, Tα does not prove
Con(T ′).
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Reflection principles

Let T be a Gödelian theory.

Reflection principles Rn(T ) for T are arithmetical sentences
expressing “every Σn-sentence provable in T is true”.

Rn(T ) can be seen as a relativization of the consistency assertion:

R0(T )↔ Con(T )
Rn(T )↔ Con(T + all true Πn-sentences)

Rn(T ) is expressible as a Πn+1-sentence.
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Semilattice of Gödelian theories

Def. GEA is the set of all Gödelian extensions of EA mod =EA.

S ≤EA T ⇐⇒ EA ` ∀x (2T (x)→ 2S(x));

S =EA T ⇐⇒ (S ≤EA T and T ≤EA S).

Then (GEA,∧EA) is a lower semilattice with
S ∧EA T := S ∪ T
(defined by the disjunction of the formulas defining sets of axioms
of S and T )
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Monotone operators

Each of Rn correctly defines a monotone operator R : GS → GS

on the semilattice of Gödelian extensions of S .

An operator R is:

monotone if x ≤ y implies R(x) ≤ R(y);

semi-idempotent if R(R(x)) ≤ R(x);

closure if R is m., s.i. and x ≤ R(x).

All Rn are monotone and semi-idempotent, but not closure.
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Iteration theorem

Def. R : GT → GT is computable if it can be defined by a
computable map on the Gödel numbers of formulas defining the
extensions of T .

Suppose (Ω,≺) is an elementary recursive well-ordering and R is a
computable m.s.i. operator on GT .

Theorem

There exist theories Rα(S) (where α ∈ Ω):
R0(S) =T S and, if α � 0,

Rα(S) =T
⋃
{R(Rβ(S)) : β ≺ α}.

Each Rα is computable and m.s.i.. Under some natural additional
conditions the family Rα is unique modulo provable equivalence.
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Proof-theoretic ordinals and spectra

Let S be a Gödelian extension of EA and (Ω, <) a (natural)
elementary recursive well-ordering.

Π0
n+1-ordinal of S , denoted ordn(S), is the sup of all α ∈ Ω

such that S ` Rαn (EA);

Conservativity spectrum of S is the sequence (α0, α1, α2, . . . )
such that αi = ordi (S).

Examples of spectra:
IΣ1 : (ωω, ω, 1, 0, 0, . . . )
PA : (ε0, ε0, ε0, . . . )
PA + WP : (ε2

0, ε0 · 2, ε0, ε0, . . . )
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Reflection algebra

Reflection algebra of T is the structure

(GT ,∧T , 1T , {Rn : n ∈ ω}).

Here, 1T is the top element (the equivalence class of T ).

We are interested in

The identities of this structure;

Its subalgebra generated by 1T .
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Reflection calculus RC

Language: α ::= > | p | (α ∧ α) | nα n ∈ ω
Example: α = 3(2p ∧ 32>), or shortly: 3(2p ∧ 32).

Sequents: α ` β.

RC rules:

1 α ` α; α ` >; if α ` β and β ` γ then α ` γ;

2 α ∧ β ` α, β; if α ` β and α ` γ then α ` β ∧ γ;

3 nnα ` nα; if α ` β then nα ` nβ;

4 nα ` mα for n > m;

5 nα ∧mβ ` n(α ∧mβ) for n > m.

Ex. 3 ∧ 23 ` 3(> ∧ 23) ` 323.
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Main results on RC

Theorems (E. Dashkov, 2012).

1 α `RC β iff α ≤T β holds in (GT ;∧T , 1T , {Rn : n ∈ ω});

2 RC is polytime decidable;

3 RC enjoys the finite model property.

Rem. The first claim is based on Japaridze’s (1986) arithmetical
completeness theorem for provability logic GLP.
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RC 0 as an ordinal notation system

Let RC 0 denote the variable-free fragment of RC.
Let W denote the set of all RC 0-formulas. For α, β ∈W define:

α ∼ β if α ` β and β ` α in RC0;

α <n β if β ` nα.

Theorem.

1 Every α ∈W is equivalent to a word (formula without ∧);

2 (W /∼, <0) is isomorphic to (ε0, <).

ε0 = sup{ω, ωω, ωωω
, . . . }
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Reduction property

Let U ≡n V mean U and V prove the same Πn+1-sentences.

Suppose S ⊆ Πn+2 and U ` S .

Theorem. Rn+1(U) ≡n Rωn (U) in GS .

Example. In GEA:

IΣ1 ≡ R2(EA) ≡1 Rω1 (EA) ≡ PRA (Parsons–Mints).

(This can be written as: 2 ≡1 {1k : k < ω} in GEA.)
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Explaining steps of the Worm game

Suppose α = (n + 1)β ∈W , let αS denote the value of α in GS .

αS = Rn+1(U) where U = S + βS .

By the reduction property Rn+1(U) ≡0 {Rk
n (U) : k < ω}.

Iterations Rk
n (U) correspond to the RC-formulas:

nβ, n(β ∧ nβ), n(β ∧ n(β ∧ nβ)). . .

Each of these formulas is RC-equivalent to a word.

These words correspond to the main rule of the Worm
sequence.

Lev D. Beklemishev Reflection algebras and progressions



Iterated reflection and analysis of PA

Wn is the set of words in the alphabet {k ∈ ω : k ≥ n}.
We consider (Wn, <n) as an ordinal notation system and build
the corresponding progression iterating Rn.

Let S be a Πn+1 extension of EA.
Each α ∈W corresponds to an element αS ∈ GS .

Theorem. For all α ∈Wn, theories αS and Rαn (S) over S are
equivalent for Πn+1-sentences.

Corollary. For each n, PA ≡n Rε0
n (EA) (U. Schmerl)

1 For n = 0: Consistency proof for PA (Gentzen);

2 For n = 1: Characterizing provably recursive functions of PA
(Ackermann–Schwichtenberg–Wainer).
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